
Distributed Applications
TUM Summer Term 2014
Lecturer: Prof. Schlichter

Janosch Maier

5. Juni 2014

1



Inhaltsverzeichnis
1 Introduction 7

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.1 Internet Computing . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Enterprise Computing . . . . . . . . . . . . . . . . . . . . 7

1.2 Key Characteristics of Distributed Systems . . . . . . . . . . . . 7
1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Definitions ’Distributed System’ . . . . . . . . . . . . . . 7
1.2.3 Methods of Distribution . . . . . . . . . . . . . . . . . . . 8
1.2.4 Properties of Distributed Systems . . . . . . . . . . . . . 8
1.2.5 Challenges of Distributed Systems . . . . . . . . . . . . . 8
1.2.6 Examples for Development Frameworks . . . . . . . . . . 8

1.3 Distributed Applications . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Distributed vs. parallel programs . . . . . . . . . . . . . . 9

1.4 Influential Distributed Systems . . . . . . . . . . . . . . . . . . . 10
1.4.1 Mach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 NFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 J2EE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.4 Google . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Architecture of distributed systems 12
2.1 System models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Architectural model . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Interaction model . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Failure model . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Security model . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Goals for distributed applications . . . . . . . . . . . . . . 13

2.3 Paradigms for distributed applications . . . . . . . . . . . . . . . 13
2.3.1 Information Sharing . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Message exchange . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Naming entities . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Bidirectional communication . . . . . . . . . . . . . . . . 14
2.3.5 Producer-consumer interaction . . . . . . . . . . . . . . . 14
2.3.6 Client-server model . . . . . . . . . . . . . . . . . . . . . . 15
2.3.7 Peer-to-peer model . . . . . . . . . . . . . . . . . . . . . . 15
2.3.8 Group model . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.9 Publish-Subscribe model . . . . . . . . . . . . . . . . . . . 15
2.3.10 Taxonomy of communication . . . . . . . . . . . . . . . . 16
2.3.11 Levels of Abstraction . . . . . . . . . . . . . . . . . . . . . 16

2.4 Client-server model . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Terms and Definitions . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Concepts for client-server applications . . . . . . . . . . . 17
2.4.3 Processing of service requests . . . . . . . . . . . . . . . . 17
2.4.4 File service . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.5 Time service . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.6 Name service . . . . . . . . . . . . . . . . . . . . . . . . . 17

2



2.4.7 Lightweight Directory Access Protocol (LDAP) . . . . . . 18
2.4.8 Failure tolerant services . . . . . . . . . . . . . . . . . . . 19

3 Remote Invocation (RPC/RMI) 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Local vs. remote procedure call . . . . . . . . . . . . . . . 20
3.1.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 RPC properties . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Distributed applications based on RPC . . . . . . . . . . . . . . . 21
3.2.1 Distributed application . . . . . . . . . . . . . . . . . . . 21
3.2.2 RPC language . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Phases of RPC based distributed applications . . . . . . . 22

3.3 Remote Method Invocation (RMI) . . . . . . . . . . . . . . . . . 22
3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 RMI characteristics . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 RMI architecture . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Locating remote objects . . . . . . . . . . . . . . . . . . . 23
3.3.5 Developing RMI applications . . . . . . . . . . . . . . . . 23
3.3.6 Parameter Passing . . . . . . . . . . . . . . . . . . . . . . 23
3.3.7 Distributed grabage collection . . . . . . . . . . . . . . . . 24

3.4 Servlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Servlet Properties . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Servlet lifecycle . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 HttpServletInterface . . . . . . . . . . . . . . . . . . . . . 24

4 Basic mechanisms for distributed applications 25
4.1 External data representation . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Marshalling & unmarshalling . . . . . . . . . . . . . . . . 25
4.1.2 Centralized transformation . . . . . . . . . . . . . . . . . 25
4.1.3 Decentralized transformation . . . . . . . . . . . . . . . . 25
4.1.4 Common external data representation . . . . . . . . . . . 25
4.1.5 XML as common data representation . . . . . . . . . . . . 26
4.1.6 Java Object Serialization . . . . . . . . . . . . . . . . . . 26

4.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Synchronizing physical clocks . . . . . . . . . . . . . . . . 27

4.3 Distributed execution model . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Ordering by logical clocks . . . . . . . . . . . . . . . . . . 29
4.3.3 Logical clocks with scalar values . . . . . . . . . . . . . . 29
4.3.4 Logical clocks with vectors . . . . . . . . . . . . . . . . . 29

4.4 Failure Handling in distributed applications . . . . . . . . . . . . 29
4.4.1 Testing distributed applications . . . . . . . . . . . . . . . 30
4.4.2 Debugging of distributed applications . . . . . . . . . . . 30
4.4.3 Approaches of distributed debugging . . . . . . . . . . . . 30

4.5 Distributed transactions . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.1 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.2 Atomicity and persistence . . . . . . . . . . . . . . . . . . 31
4.5.3 Two-phase commit Protocol (2PC) . . . . . . . . . . . . . 31
4.5.4 Extended 2PC . . . . . . . . . . . . . . . . . . . . . . . . 31

3



4.5.5 Distributed Deadlock . . . . . . . . . . . . . . . . . . . . 31
4.6 Group communication . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6.1 Groups of components . . . . . . . . . . . . . . . . . . . . 32
4.6.2 Group Management . . . . . . . . . . . . . . . . . . . . . 32
4.6.3 Message dissemination . . . . . . . . . . . . . . . . . . . . 32
4.6.4 Message delivery . . . . . . . . . . . . . . . . . . . . . . . 33
4.6.5 Taxonomy of multicast . . . . . . . . . . . . . . . . . . . . 33
4.6.6 Group communication in ISIS . . . . . . . . . . . . . . . . 33
4.6.7 JGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Distributed Concensus . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7.1 Consensus problem . . . . . . . . . . . . . . . . . . . . . . 34
4.7.2 Byzantine Generals Problem . . . . . . . . . . . . . . . . 34
4.7.3 Interactive Consistency Problem . . . . . . . . . . . . . . 34
4.7.4 Consensus in synchronous networks . . . . . . . . . . . . 35

4.8 Authentacation service Kerberos . . . . . . . . . . . . . . . . . . 35
4.8.1 Authentication process . . . . . . . . . . . . . . . . . . . . 35

5 Web Services 36
5.1 Service Oriented Architecture (SOA) . . . . . . . . . . . . . . . . 36

5.1.1 Layered Approach . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Adpoting SOA . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Web Services – Characteristics . . . . . . . . . . . . . . . . . . . 36
5.3 Web Services Architecture . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1 Interoperability Stack . . . . . . . . . . . . . . . . . . . . 37
5.3.2 Basic architecture . . . . . . . . . . . . . . . . . . . . . . 37
5.3.3 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.4 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.5 Basic Standard Technologies . . . . . . . . . . . . . . . . 38
5.3.6 Message Exchange Patterns . . . . . . . . . . . . . . . . . 38

5.4 Simple Object Access Protocol (SOAP) . . . . . . . . . . . . . . 38
5.4.1 Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.2 Exchange Model . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.3 SOAP in HTTP . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.4 SOAP RPC Conventions . . . . . . . . . . . . . . . . . . . 39
5.4.5 SOAP-Router . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Web Services Description Language (WSDL) . . . . . . . . . . . 39
5.5.1 WSDL Information model . . . . . . . . . . . . . . . . . . 39
5.5.2 Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.3 Generate code from WSDL . . . . . . . . . . . . . . . . . 40
5.5.4 Bad Practices . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 Universal Description, Discovery and Integration (UDDI) . . . . 40
5.6.1 UDDI Business Registry System . . . . . . . . . . . . . . 40
5.6.2 UDDI Entities . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6.3 UDDI Registry API . . . . . . . . . . . . . . . . . . . . . 40

5.7 Representational State Transfer (REST) . . . . . . . . . . . . . . 41
5.8 Web Service Composition . . . . . . . . . . . . . . . . . . . . . . 41

5.8.1 Dimensions to handle complexity . . . . . . . . . . . . . . 41
5.8.2 Web Service Orchestration . . . . . . . . . . . . . . . . . 41

5.9 Adopting Web Services . . . . . . . . . . . . . . . . . . . . . . . . 41
5.9.1 Example Web Services . . . . . . . . . . . . . . . . . . . . 41

4



5.9.2 Apache Axis . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.9.3 Web Services & Java . . . . . . . . . . . . . . . . . . . . . 42
5.9.4 Distributed Process Architecture . . . . . . . . . . . . . . 42
5.9.5 Semantic Web Services . . . . . . . . . . . . . . . . . . . . 42

5.10 Mashups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.10.1 Mashup Techniques . . . . . . . . . . . . . . . . . . . . . 42
5.10.2 Development Support . . . . . . . . . . . . . . . . . . . . 42

6 Design of distributed applications 43
6.1 Steps in design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Development environment . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 Open Distributed Processing (ODP) . . . . . . . . . . . . 43
6.2.2 Model Driven Architecture (MDA) . . . . . . . . . . . . . 43

6.3 Service-Oriented Modeling . . . . . . . . . . . . . . . . . . . . . . 44
6.3.1 Service Evolution . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.2 Life Cycle Structure . . . . . . . . . . . . . . . . . . . . . 44
6.3.3 Life Cycle Modeling . . . . . . . . . . . . . . . . . . . . . 44
6.3.4 SOM Framework . . . . . . . . . . . . . . . . . . . . . . . 45

7 Distributed file service 46
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.1.1 Consistency types . . . . . . . . . . . . . . . . . . . . . . 46
7.1.2 Replica placement . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Layers of a distributed file service . . . . . . . . . . . . . . . . . . 46
7.3 Update of replicated files . . . . . . . . . . . . . . . . . . . . . . . 47

7.3.1 Optimistic concurrency control . . . . . . . . . . . . . . . 47
7.3.2 Pessimistic concurrency control . . . . . . . . . . . . . . . 47
7.3.3 Voting schemes . . . . . . . . . . . . . . . . . . . . . . . . 47

7.4 Coda file system . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4.2 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4.3 Replication strategy . . . . . . . . . . . . . . . . . . . . . 48
7.4.4 Disconnected operation . . . . . . . . . . . . . . . . . . . 48

8 Distributed Shared Memory (DSM) 49
8.1 Programming model . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Consistency model . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3 Tuple space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.3.1 Atomic operations . . . . . . . . . . . . . . . . . . . . . . 49
8.3.2 Tuple space implementation . . . . . . . . . . . . . . . . . 49
8.3.3 Exapmle program . . . . . . . . . . . . . . . . . . . . . . 49

8.4 Object Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.4.1 Features of JavaSpaces . . . . . . . . . . . . . . . . . . . . 50
8.4.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . 50
8.4.3 Basic operations . . . . . . . . . . . . . . . . . . . . . . . 50

5



9 Object-based Distributed Systems 51
9.1 Object Management Architecture (OMA) . . . . . . . . . . . . . 51
9.2 Object Request Brokers (ORB) . . . . . . . . . . . . . . . . . . . 51

9.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.2.2 ORB structure . . . . . . . . . . . . . . . . . . . . . . . . 51

9.3 Common object services . . . . . . . . . . . . . . . . . . . . . . . 52
9.4 Inter-ORB protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.5 Distributed Component Object Model (DCOM) . . . . . . . . . . 52
9.6 .NET-Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6



1 Introduction
1.1 Background

• Production flows (manufacturing)

• Money flow (banking)

• Information flow

1.1.1 Internet Computing

• Shared Resources

• Information Communication

• Activity Coordination

• Examples: Online flight-reservation, ATMs, WWW, Grid Computing, ...

1.1.2 Enterprise Computing

• Applications ↔ Network ↔ Database Systems

• Close coupling of applications on heterogenous platforms over network

• Reliability: Consistency, Security / Privacy, Response time, Error toleran-
ce, Autonomy of components

1.2 Key Characteristics of Distributed Systems
1.2.1 Motivation

• Cheaper processors, storage

• High bandwith

• Complex applications

• Cooperative applications (CSCW)

1.2.2 Definitions ’Distributed System’

• Tanenbaum: Independent computers appearing as single computer

• Lamport: Stops work if machine unknown to user crashes

• Working Definition: Hardware and software of network computers com-
municate & ccordinate actions (through messages)
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1.2.3 Methods of Distribution

• Hardware components

• Load

• Data

• Control (e.g. distributes os)

• Processing (e.g. map-reduce-algorithm)

1.2.4 Properties of Distributed Systems

• Existence of multiple functional units (physical, logical)

• Distribution of functional units

• Independent breakdown of units

• Distributed component control

• Transparency (unit distribution hidden to user)

• Cooperative autonomy

1.2.5 Challenges of Distributed Systems

• Heterogenity (of networks, hardware, os, languages, ...) ⇒ Middleware
needed

• Openness ⇒ Standardized interfaces

• Scalability

• Security & Privacy

1.2.6 Examples for Development Frameworks

• NFS – Network File System (SUN)

• ONC – Open Network Computing (SUN)

• ODP – Open Distributed Processing (ISO)

• CORBA – Common object Request Broker Architecture (OMG)

• J2EE – Java 2 Platform Enterprise Edition (SUN)

• .NET – Framework (Microsoft)

1.3 Distributed Applications
Set of cooperating, interacting functional units ⇒ Parallelism, Fault tolerance,
Inherent Distribution

8



1.3.1 Definition

• Application A, split into components A1, ..., An;n ∈ N, n > 1. Each Ai

has internal state (data) and operations

• Components Ai are autonomous, can be assigned to different machines Fi

• Components Ai exchange information via network

1.3.2 Interfaces

• Well-defined interaction points between components

• Specify component operations and commpunication

– Parameters (+ types)
– Results (+ type)
– Side-Effects (e.g. data entry)
– Effects on subsequent operations
– Constraints

Abbildung 1: Interfaces between two applications

1.3.3 Distributed vs. parallel programs

• Distributed

– Ganularity: Coarse
– Data Space: Private
– Failure Handling: In communication protocol

• Parallel

– Ganularity: Fine
– Data Space: Shared
– Failure Handling: Not considered
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1.4 Influential Distributed Systems
1.4.1 Mach

• OS from Carnegie-Mellon Univeristy for Multiprocessor / Distributed Ap-
plications

• Goals: Unix-Emulation, Transparency, Portability

• Architecture: Process with execution environment for secure resource ac-
cess, Threads as distribution unit (Thread on single system), Shared-
Memory-Objects possible (Copy-on-Write)

• Message Exchange through ports (protected by capabilities), Network
messages possible

1.4.2 NFS

• Distributed File Management (e.g. on Unix)

• Characteristics: Server Exports (/etc/exports), Client Mounts (Host, Re-
mote Path, Local Path), Automounter on access possible, Access Trans-
parency

• Implementation: RPC calls between systems, UDP or TCP possible, sta-
teful (used to be stateless)

1.4.3 J2EE

• Distributed application server environment

• Objectives: Standardized programming environment for enterprise appli-
cations, Java-based, Component-based, Network-oriented, Runtime infra-
structure + Java extensions APIs

• Architecture: Application server (runtime environment), J2EE container,
data storage

• Enterprise Java Beans (EJB): server-side managed infrastructure, bean
offers business interfaces, 3-tier applications

• J2EE container: runtime environment for application, API access, e.g.
JavaServlets within WebContainer

• J2EE application: Modules with application components e.g. jar-file

• Java Server Pages: XML-like-tags, e.g.:

<\% code fragments \%>
<\% i f ( value . getName() . length != 0) { \%>

<H2>The value i s : <\%= value . getName()\%></H2>
<\%} e l s e {\%>
<H2>Value i s empty</H2>

<\% }\%>
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1.4.4 Google

• One of largest distrubited systems toda

• Physical infrastructure: Commodity pcs in racks in clusters in data centers

• Middleware: Buffers + publish/subscribe

• Distributed Computation: map-reduce-algorithms
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2 Architecture of distributed systems
2.1 System models
Describtion of a distributed system

2.1.1 Architectural model

Interaction between components, mapping to network

• Software layers: applications / services, middleware, operating system,
computer / network devices

• Middleware: Provide homogenity for programming: Hide (communicati-
on) complexity, communication, persistence, trinsaction, ..., Categories:
distributed component, peer-to-peer

• System architecture: Client-Server, Proxy server, Peer process, Communi-
ty of software agents

2.1.2 Interaction model

Performance and time-limits

• No single global time ⇒ Logical clocks for synchronization

• Different order of messages at different recipients

• Consistent ordering

2.1.3 Failure model

How can failure occure + handling

• Crash fault: Hardware / Software failure

• Message lost: Buffer overflow, Router congestion

• Fail stop failures: System crashes, Partners are notified

• Timing failures: Clock not sychronized, Transmission timeout

• Arbitrary failures: Process steps not run / unintendetly run / wrong mes-
sages

• Malicious Byzantine failures: Messages replay, Program modification

2.1.4 Security model

Possible threats + handling

• Secure communication

• Unauthorized access

• Message authentication
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2.2 Transparency
• Location Transparency: Location of object (resource or service) is in ds-

tributed system

• Access Transparency: Access to object independent from their location

• Replication Transparency: User unaware if object is replicated (e.g. for
fast access)

• Migration Transparency: Object’s location might change without influen-
cing application behavior

• Host Migration Transmission: Same environment for cumputer indepen-
dent from subnetwork (offline/online migration possible)

• Language Transparency: Interaction between components independent from
programming language

• Failure Transparency: Partial failures masked by system

• Concurrency Transparency: Shared access to objects possible

• Execution Transparency: Processes may be run on different runtime sy-
stems

• Performance Transparency: Dynamic reconfiguration for load balancing

• Scalability Transparency: Scaling possible without structural / algorithmic
changes

2.2.1 Goals for distributed applications

• Realization of several transparency levels

• Problem CSCW: Not always group awareness, Selective transparency: lo-
cation & access but NO strict concurrency transparency.

2.3 Paradigms for distributed applications
2.3.1 Information Sharing

• Communication using shared, integrated information managements

• No direct communication (shared memory)

2.3.2 Message exchange

• Interprocess commpunication (IPC): Message between sender and receiver

• send(E: receiver, N: message);

• receive(S: sender, B: buffer);

• Sender / Receiver perspective possible

• Asynchronous message exchange (nonblocking)
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– S resumes processing, after N is put to message queue / message
buffer (NP)

– E repears receive operation until message arrives
– Advantages: real-time, paralle execution, event signaling possible
– Disadvantages: buffer management, notification of failures, design dif-

ficult

• Synchronous message exchange (blocking)

– S blocked until E has received message
– E is blocked until N is completely loaded to NP
– Decoupling to avoid endless waiting: timeout, threads for message

handling

• Remote-invocation send: S suspends execution until E has recieved and
processed request which was part of sent message

2.3.3 Naming entities

• Names: unique character string refering an entity, invokation points bound
to names (addresses, e.g. Apache bound to hostname)

• Name space: Organization of names, hierachical, labeled directed graph,
absolute vs. relative patkh names

• name resolution: lookup of names

2.3.4 Bidirectional communication

• Request-answer scheme for message exchanges

• Sockets as low level abstraction: os-controlled interface for applications,
identification: ip, port

• Call semantics: dealing with message loss, crash of S or E

– at-least-once semantics: Operation processed once or several times
– exaclty-once semantics: Processed once; result stored in case of lost

answer
– last semantics: Processed onece or several times; only last processing

produces result
– at-most-once semantics: Processed once or not at all. If processesd,

similar to exaclty-once

2.3.5 Producer-consumer interaction

• Fire & forget interaction: Producer (S) directly resumes execution

• Special case: Piping (After sending, producer terminates)
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2.3.6 Client-server model

• Central server provides service to requesting clients

• Request-Answer Interaction: Handshaking principle – Client suspends till
server returns request response

• Service-oriented architecture (SOA): abstract archtectural approach – loo-
se coupling / dinamic binding, modularized software, service manages its
own data, 3 roles: service requestor, provider & registry, Web services
moslty SOA

• E.g. webserver: stateless (session handlung on application layer)

2.3.7 Peer-to-peer model

• All processes similar role: cooperative interaction, no clients/servers

• client-server (server maintainance, client fewer resources) vs. p2p (similar
resources for each peer, direct communication)

• Issues: Peer discovery, data location, file exchange, security/privacy

• Napster: Central server with music list

• Gnutella: no server directory – loose federation of gnutella computers,
On connection at least one address needed, Find a file: send request to
neighbours, propagate through network

• BitTorrent: recipients also propagate data to newer recipients

• eDonkey: Files identifieds compound md4 hash sums

• Gossip-based Approach: Information propagation similar to epidemic de-
seases: exponential rate: everybody tells one pearson in each step⇒ Spre-
adrate 1.8k after k rounds. Combination of push and pull works best,
robust & scalable algorithm

2.3.8 Group model

• Combine set of components into group (e.g. Service provided by group of
servers)

• Important: Shared problem, information exchange, group awareness, corr-
dination

• Used in CSCW

2.3.9 Publish-Subscribe model

• Publish structured events

• Subscribe to particular events

• System matches subscribtions against events and sends notifications: he-
terogenous environment, asynchronous notifications)
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2.3.10 Taxonomy of communication

• Message serialization: Messages to group are received in different order

• One sender:

– Arrival time by receiver
– Sequence number by sender
– Own serialization criteria by receiver

• Several senders

– No serialization
– Loosely-synchronous: Loosely synchronized global time
– Virtualle-synchronous: Order determinde by causal interdependenci-

es (N send after M received, N might depend on M)
– Totally ordered: By token / By coordinator

2.3.11 Levels of Abstraction

• Object Space, Collaborative applications

• Network services, Object request broker

• Remote procedure call, Remote Method invocation

• Client/Server, P2P

• Message Passing

2.4 Client-server model
Implements Handshaking principle

2.4.1 Terms and Definitions

• Sender/Receiver: Message exchanging vs Client/Server: Entities in specia-
lized protocol

• Client: process (application) running on client machines, (typically) re-
quest for service operations (a priori unknown)

• Service: Software providing service operation running or one ore multiple
machines

• Server: Subsystem providing service to clients. Executes software on server
machine. Server machine can host multiple server subsystems

• Client-Server interfaces

– Client interface / import interface: represents server within client
– Server interface / export interface: represents all potential client wi-

thin server

• Multitie architecture: One machine as client&server between actual client
and server (e.g. webserver between browser and application server)
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2.4.2 Concepts for client-server applications

• Remote data storage: NFS (Client: presentation & execution – Server:
database)

• Remote presentation: X window system (Client: presentation – Server:
presentation, execution & database)

• Distributed application: Cooperative processing (Client: presentation &
execution – Server: execution & database)

• Distributed data storage: Data distributed between client and (Client:
presentation, execution & database – Server: database)

2.4.3 Processing of service requests

• Different life spans for client/server. Server manages requests in queue

• Single dedicates server process: not parallel, no interruption when higher
prioritized request, bottleneck

• Cloning of new server processes: expensive, synchronization, parallel pro-
cessing possible

• Parallel request processing through threads: shared address space

2.4.4 File service

• Centralized data storage: Client for display, quick interaction times, caching
for speed increases

• Stateless server: Client supplies al parameters to process request, cache
refresh done by client, often: write-through, server crash not influencing
client

• Stateful server: Server tracks clients and actions, cache owned by server,
clients less complex, after server crash: abort message to server

2.4.5 Time service

provides synchronized time for network nodes

2.4.6 Name service

• Name management for clients (sometimes called directory service)

• Datastructure: {name, adress, access information, attributes}

• Example: DNS – hierachial, distributed databases across logical network
of nameservers
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2.4.7 Lightweight Directory Access Protocol (LDAP)

• Access and update of directory information

• Directory: List of objects in order, with meta-data – high volume of reads,
no transactions, different query languages

• Directory service: name service containing object names and meta-data

• Queries

– In directiories: Based on names & meta-data
– White Pages: Object access based on name
– Yello Pages: Object access based on meta-data

• LDAP models: information models (data structures), naming model (re-
ferencing objects), functional model (communication), security model (ac-
cess control)

• LDAP architecture: Client/serer based on TCP/IP, string for data repre-
sentation

– Client initiates session with server (IP, port, username, password) –
Binding

– Client invoces operation (read, write, seek)
– Client terminates – Unbinding

• Information model: Entry describes object with distinguished name (DN),
set of attributes (meta-data) with type and value(s)

– Attribute syntax: bin (binary), ces (case exact string), cis (case ignore
string), tel (telephone number), dn (distinguished name), generalized
time, postal address

– Schemas for entries based on attributes: E.g. Person: entry for one
person, attributes commonName (cn), surname (sn)

• Naming model: DN contains of relative distinguished names (RDN), hier-
archically structured as Directory Information Tree (DIT), DIT supports
aliases, distribution acress servers possible

• Functional model: Operatitons for access/modification. E.g. create, dele-
te, update (e.g. move in DIT), compare, search (Find postal address for
cn=John Smith,o=IBM,c=DE; Base object stparting point; scope: base-
Obeject, singleLevel, wholeSubtree; search filter possible)

• LDIF: LDAP Data Interchange Format: Import/Export directory infor-
mation
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2.4.8 Failure tolerant services

• Modular redundancy: Multiple redundant services, copies grouped into
server/client groups

• Primary-standby-approach: One replica as master, At checkpoints, status
is propageted to replicas, On error, master is replaced by replica, hot vs.
cold standby
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3 Remote Invocation (RPC/RMI)
3.1 Introduction
3.1.1 Local vs. remote procedure call

Local:

• Caller → request → procedure

• Caller ← answer ←

Distributed:

• RPC similar, Single thread responsible for data transfer

• Interface between remote systems

3.1.2 Definition

• Birrell & Nelson: Synchronous flow of control & data through pocedure
calls between seperate adress spaceses via small channels

• Synchronous: Client blocked

• Procedure calls: format defined by signater of called procedure

• Different address spaces: No globac memory space; Pointer handling nee-
ded

• Smal channel: reduced bandwith

3.1.3 RPC properties

• Client/Server cannot assume that procedure call performed via network

• Control flow: S registers service, C binds to S, Request, Responce

• Differences betwen RPC and local procedure call

– Caller & callee in different processes
– No shared address space, No common runtime environment, Different

lifetime
– Errorhandling must consider communication failures

• Basic RPC characteristics

– Uniform call semantics
– Type-checking
– Parameter functionality
– Optimize response times
– New error cases

• RPC and OSI
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– Application layer: client-server model
– Presentation layer: RPC (hide communication details behind proce-

dure call, bride heterogenous platforms)
– Session layer: message exchange (OS interface)
– Transport layer: transport protocols (transfer of data packets)

• RPC vs. message exchange

– Synchronous – Asynchronous
– 1 primitive operation – 2 primitive operations (send, receive)
– Messages configured by RPC system – Messages configured by pro-

grammer
– One open RPC – Several parallel messages possible

• RPC exchange protocols: Request (R), Request-Reply (RR), Request-
Reply-Acknowledge (RRA)

3.2 Distributed applications based on RPC
3.2.1 Distributed application

• Stubs to make network interfaces transparent

– Encapsulate distribution specific aspects
– Represent interafces
– Client stub: Proxy definiton of remote procedure P – Specification

of remote service operation, assgning correct server, parameters in
transmission format, decoding results, ublocking client

– Server Stub: Proxy call for procedure P – Decoding paremeters, ad-
dress of service operation, invoking operation, prepare and send res-
ponse

• Implementing a distribution application

– Manual stub implementation error-prone → RPC generator (decla-
rative interface describtion)

– Applying RPC generator: See picture on page 70

3.2.2 RPC language

• Declarative language specifing interface between component of a distri-
butted application

• Interface attribute list: version of RPC system, fixed ports for invokati-
on: interface identifier, constant declarations, type declarations, operation
declarations
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3.2.3 Phases of RPC based distributed applications

• 3 Phases: Design & implementation, Binding of components, Invocation

• Component Binding (Linking of components to enable RPC calls)

– Static: Binding, when client generated; Server address hard-coded
– Semistatic: Client determines server while initalization of client pro-

cess (static for lifecycle); Address via database, broad-/multicast mes-
sage, nameservice, mediation mechanism (broker/trader)

– Dynamic: Server address determined when RPC is performed; Ad-
vantages: server migration, binding to alternative servers, dynamic
server replacement.

• Mediation and brokering (registry, broker, trader)

– Functionality: Server registers interfaces with broker (export inter-
face), broker supplies client with interface information (import inter-
face)

– Broker information: Information about interfaces: names (white pa-
ges), types (yellow pages), behavioral/functional attributes (static:
functionality, cost, bandwith / dynamic: server state)

– Handling client requests: Direct – communication between C and S
vs. Indirect – Communication between C and S only via broker V

3.3 Remote Method Invocation (RMI)
Communication between different Java virtual machines

3.3.1 Definitions

• Remote object: Can be called by object within another JVM (on another
computer)

• Remote interface: Java interface specifying remote object

• Remote method invokation (RMI): objet-to-object communcation; Invo-
cing a method of remote interface; Same syntax as local call

3.3.2 RMI characteristics

• location & access transparency

• localization

• communication with remote objects

• automated class loading

• Clients interact with remote interfaces (not classes)

• RMI workflow: S registers with RMI registry (nameservice), C looks S
up in registry, C receives stub for S, C calls objects like a local object
(communication via stubs & skeletons)
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3.3.3 RMI architecture

• Application layer: client method invokation vs. remote object

• Presentation layer: stub (proxy object) vs. skeleton

– Interception of client method calls; redirection to remote object

• Session layer: remote reference layer (client & server)

– Connection via 1-to-1 link
– Java Remote Method Protocol (JRMP) vic TCP/IP
– Mapping of stub/skeleton to transport protocol
– Method invoke

3.3.4 Locating remote objects

• Nameservice: RMI registry (mapping, stand-alone Java application, runs
on all remote machines, standard port 1099, itself remote object)

• Access via java.rmi.Naming

• Naming interface methods: bind, rebind, Remote lookup, unbind, list

• Registry-Lookup: C invokes lookup for url (rmi://host:port/service) –
socket connection, stub to remote registry returned, Registry.lookup() per-
formed on stub, Stub for remote object returned, C interacts with remote
object via stub

3.3.5 Developing RMI applications

• Define remote interface: public, extends java.rmi.Remote, each method
throws java.rmi.RemoteException, remote object parametrs/returns musst
be nterfaces

• Implement remote interface: Basics in java.rmi.server.RemoteServer, Sub-
classes: UnicastRemoteObject, Activatable

• Generate stubs and skeletons (using the tool rmic)

• Remote object registration: Register in registry on host of remote object,
stub needed

• Client implementation: Client registry lookup to get reference to remote
object, Interaction always with remote interface

3.3.6 Parameter Passing

• Primitive data types passed with values

• Local object parameter: Object passed (must implement java.io.Serializable
or java.io.Externalizable)

• Remote object parameter: Stub of remote object transfered as reference
to remote object
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3.3.7 Distributed grabage collection

• Reference counter represents references which are alife

• Client access creates referenced message / No more reference → unrefe-
renced message

• Lifetime limit of references, Afterwards connection to server must be re-
newed

3.4 Servlets
Programs invoked by client, execoted on server host to extend functionality of
the server

3.4.1 Servlet Properties

• Execution by Servlet engine (e.g. Apache Tomcat)

• Methods specified within servlet object: init, shutdown, service (client re-
quest forwarded)

• Invoked via HTTP requests (e.g. http://myhost:8080/servflet/formServlet)

3.4.2 Servlet lifecycle

Loaded, Created, Initialized, Served Destroyed

3.4.3 HttpServletInterface

• HttpServlet extends GenericServlet

• Functions: doGet, doPost, doDelet, doPut
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4 Basic mechanisms for distributed applications
4.1 External data representation

• Heterogenous environment = different data presentations ⇒ data trans-
formation needed

• Independence from hardware: External data representation

4.1.1 Marshalling & unmarshalling

• Marshal: Parameter serialization to data stream

• Unmarshal: Extraction from data stream and reassembly of arguments

• Either by RPC system or as software plugin

4.1.2 Centralized transformation

Only one node transforms data (send & received)

4.1.3 Decentralized transformation

All nodes transform data

• A transforms data send to B and vice versa

• A transforms data by B and vice versa

• A & B transform data into network-wide standard format; Recipient trans-
forms into local format (→ Adding of components only need to know net-
work standard)

4.1.4 Common external data representation

• Important aspects: Machine independent format, Description of complex
data structures

• E.g. ASN.1

• For numbers: Little endian (lower part of numbers in lower memory area);
Big endian (higher part of numbers in lower memory area) – Convention:
Network transfer structure well-defined, such as big endian

• For strings: 4 bytes length n, n bytes data, r bytes 0s with: (n+r) mod 4 =
0

• For arrays: 4 bytes length n, n elements (If variable number of elements:
counted array)

• For pointers: Problem, no shared address space

– Prohibit pointers in RPC
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– Dereference pointers in RPC: Serialize datastructure (marshal) and
transfer whole data structure; booleans instead of null pointers; no
function pointers in heterogenous environments (homogenous java
possible)

– Transfer pointer

4.1.5 XML as common data representation

• Complex datatypes mapped to XML schema types for network transfer

• Primitive Datatypes: XML Schema Definition (XSD) equivalent

• SOAP build-in array encoding support

• SOAP API for custom mapping

• Abstraction:

– High: Application specific: XML
– Middle: General encoding: ASN.1
– Low: Network encoding: Sun XDR

4.1.6 Java Object Serialization

• Flattening object to store on disk or transmitting in messages

• Stored information: class information (name + version number); number,
types & names of variables; values of instance variables

• Java Serialization: ObjectOutptutStream.writeObject(obj)

• Java Deserialization ObjectInputStream.readObject

4.2 Time
• Need to measure time accurately: Time of events on computer → Syn-

chronized clocks for Concurrency control, Authentication (e.g. Kerberos)

• Notions of time:

– Time seen by observer
– Time seen by processes
– Logical notion (A before B)

4.2.1 Introduction

• Each computer has own clock: Processes get time, Timestamp of events,
Clocks drift from perfect time (clock drift rate = difference per unit of
time since reference clock)

• Timestamp: At time t OS reads hardare wlock Hi(t) and calculates time
on software clock Ci(t) = aHi(t) + b (e.g. nanoseconds since base time)
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• Skew between clocks: Disagreement between two clocks, Ordinary quartz
clocks drift by ~1 sec in 11-12 days

• Coordinated Universal Time (UTC): International standard (atomic time,
adjusted to astronomical time), Broadcasted land-based accurate about
0.1-10 ms, GPS about 1 microsecond

4.2.2 Synchronizing physical clocks

• Physical clocks to compute current time to timestamp events (file modifi-
cation, transactions, ...)

• External Synchronization: With External authoritative clock S: |S(t) −
Ci(t) < D|

• Internal Synchronization: Pair of computers: |Ci(t) − Cj(t) < D| (might
drift cellectively)

• Processes synchronized externally with bound D ⇒ Synchronized inter-
nally with bound 2D

• Clock correctness:H correct if drift rate within bound q > 0 (e.g. 10−6 secs
sec )

– Error of interval between t and t′ bounded; No jumps
– Weaker monotonicity: t′ > t → C(t′) > C(t) e.g. required by Unix

make
– Faulty clock is not correct: crash failure (clock stops ticking), arbi-

trary failure (anything else e.g. jumps)

• Synchronization in a synchronous system

– Bounds in synchronous system: Time needed for process step has
lower & upper bound, message transmission bounded, process clocks
bounded drift rate

– Process p1 sends time t to p2

– p2 sets clock to t+ (Ttransmax−Ttransmin
)

2 ; Skew ≤ (Ttransmax−Ttransmin
)

2

• Christian’s method for asynchronous system

– Observation: round trips reasonable short but unbounded; estimate
possible, if round trip sufficiently short compared to accuracy needed

– p requests time from S and sets clock to t+Tround

2 ; Accuracy:±Tround

2 −
min

– Discussion: Only suitable in LAN/Intranet: Time server might fail,
Faulty time servers, False clock reading

• Berkeley algorithm

– Internal synchronization of group of computers (only intranet suita-
ble)

– Master (can be reelected on failure) polls to collect clock value; Round
trip time used to compute slaves’ clock values
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– Calculation of average (eliminating spikes)
– Sends adjustments to slaves

• Network Time Protocol (NTP)

– Time distribution over internet via hierarchical tree (Primary con-
nected to UTC, secondary connected to primary)

– Subnet can reconfigure on failures: Primary lost source becomes se-
condary, Secondary losing primary use another primary

– Synchronization modes: Multicast (low accuracy), Procedure call (See
Berkeley algorithm – middle accuracy), Symmetric (Pairs of servers
symmetric – high accuracy)

– Message exchange: UDP messages, timestamps of recent events (sen-
d/receive of previous message, send of current message), Non-negligible
delay between messages possible; See picture page 102

– NTP estimates offset o and round-trip delay d – Ti = Ti − 1+ t′ − o,
di = t+ t′, o = oi +

t′−t
2

– Offset estimation: oi offset estimation, di measure of accuracy, NTP
server pairs < oi, di >, peer-selection for reliability estimate

– Accuracy: Internet tens of ms, LAN ~1ms

• Precision Time Protocol (PTP)

– Designed for LANs; accuracy < microseconds
– Synchronization Message Exchange

* Master-Slave hierarchy; Master sync message using UDP multi-
cast + follow-up message with time, sync message left master

* Slave initiates exchange to determine round-trip-delay
* Calculation of offset See picture + formulas on page 103
* Support to select best candidate clock

4.3 Distributed execution model
4.3.1 Events

• Messages causing events: Internal events, Message sending, Message recei-
ving (s.t. + message delivery)

• send(m) →msg receive(m): Causal relation. Sending before Receiving

• || Concurrent events

• Happened Before (Lamport):

– Ordered within one component
– Send before receive
– Transitivity
– If ¬(a→ b) ∧ ¬(b→ a)⇒ a||b
– C : E → T (mapping events to timestamps): a → b ⇒ C(a) < C(b)

(If ⇔, then strictly consistent)
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4.3.2 Ordering by logical clocks

• Component manages: Logical clock (lc), View on global clock (gc)

• Update Rule 1: Update lc, when events occur

• Update Rule 2: Update gc: Attach lc to sending messages; Update view
on gc when receiving messages

4.3.3 Logical clocks with scalar values

• Clock value is positive integer. lc and view on gc represented by counter
C.

• R1: Prior to event execution: C := C + d

• R2: Receiving messages with timestamp Cmsg: C := max(C,Cmsg), exe-
cute R1, deliver message

• Partial ordering; Not strictly consistent

4.3.4 Logical clocks with vectors

• n−dimensinoal (number of components) vector with positive integers.
Component TKi manages vector vti[1...n].

• vti[i] logical clock of TKi

• vti[k] view of TKi on logical clock of TKk

• R1: vti[i] := vti[i] + d

• R2: 1 ≤ k ≤ n : vti[k] := max(vti[k], vt[k]), Execute R1, deliver message

• Timestamp comparison

– vh ≤ vk ⇔ ∀x : vh[x] ≤ vk[x]

– vh < vk ⇔ vh ≤ vk ∧ ∃x : vh[x] < vk[x]

– vh||vk ⇔ ¬(vh < vk) ∧ ¬(vk < vh)

• a and b are events with timestamps

– a→ b⇔ va < vb

– a||b⇔ va||vb

• a of TKi and b of TKj triggered:

– a→ b⇔ va[i] < vb[i] ∧ va[j] < vb[j]

– a||b⇔ va[i] < vb[i] ∧ va[j] < vb[j]

4.4 Failure Handling in distributed applications
• Local applications: Exception Handling

• Distributed: Communication failuse, system crashes, byzantine failure (er-
ratc behavior), ...
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4.4.1 Testing distributed applications

• Testing without communication ⇒ Component functaonality

• Testing with local communication ⇒ Prediction abount components (no
transport times)

• Testing with network communication ⇒ Identification of time dependen-
cies, execution ordering, multiple clients

4.4.2 Debugging of distributed applications

• Server breakpoints can cause client timeouts

• Communication between components (Message flow)

• Snapshots (No shared memory, No strict clock synchronisation; State of
system)

• Breakpoints

• Nondeterminism (Message transmission)

• Interference between debugger and application (delay)

4.4.3 Approaches of distributed debugging

• Focus and send/receive

• Monitoring communication between components. Components as black-
boxes (tested before locally)

• Global breakpoints: Events are partially ordered; Causally distributed bre-
akpoint: Remote components rolled back to earliest state after last event
in a before-relationship with triggering event

4.5 Distributed transactions
• Important to design reliable, fault tolerant distributed applications

• Several requests bundled in transaction

• Distributed transation if more than one server involved

• ACID properties: Atomicity (All or nothing), Consistency (before/after-
wards consistent state), Isolation (No effect before commit), Durability
(Results persistent)

4.5.1 Isolation

• Serializability: Same sequence on each server

• Timestamps: Timestamp (local timestamp + server id) issued to transac-
tion on start. if(ttrans < tobj) then abort else access obj.

30



• Locking: Server has locks for local objects. TA locks before access, exclu-
sive locks (or r/r), all locks removed before termination; 2-Phase-Locking:
No locks requested after first release

• Optimistic: Check for conflicts if commit ready

4.5.2 Atomicity and persistence

• Intention list: All modifications in intention list (log file). Each server S
performs ALS(trans) to update local objects. Then delete AL

• New version: On access new version of object objtrans is created. Overwrite
old element on commit.

4.5.3 Two-phase commit Protocol (2PC)

• Voting protocol to determine commit: Voting Phase, Completion phase

• Coordinator (Client / First server) contacts all servers Si (canCommit?)

• If one server votes no: Abort to all servers which voted yes (doAbort)

• All servers vote yes: Commit message to all servers (doCommit)

• Acknowledgement (haveCommited)

• getDecision: Yes/No call from participant to coordinator

• Problems: Failures on crashes (server, coordinator)

4.5.4 Extended 2PC

• Coordinator has Write-Ahead-Loging, Send Outcome, for pending tranca-
tions in outcomes table

• Server sends acknowledgement when asked for finished commits, asks for
outcome of uncommited transactions

• 3PC also possible

4.5.5 Distributed Deadlock

• Deadlock detection schemes try to find cyles in wait-for graph. Problems:
Single point of failure, Communication time

• Edge Chasing: No global wait-for graph, server has knowledge about edges,
find cycles by forwarding messages; TA starts at coordinator C (records if
TA active / waiting), Lock Manager informs C, when TA starts waiting /
aquires lock

– Initiation: Server X notes, that W is waiting for transaction U . W →
U send via C

– Detection Server Y receives W → U . It notes, U → V . It forwards
W → U → V .
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– Resolution: If Cycle detected one TA in cycle is aborted

• Transaction Priorities: Every TA can initate deadlock detection; If parallel,
several TAs might be aborted. TAs totally ordered by Priorities. Abort
TA with lowes priority

4.6 Group communication
• Traditional 1:1 communication

• Distributed environments: 1:n for fault-tolerance, object locaization, con-
ferencing/groupware, syncronization

• Functional components composed to group

• Group membership: Structural characteristics, composition, management

• Support of group communication: addressing, delivery

• Communication: unicast, broadcast, multicast (fault tolerance, location
objects, multiple update of distributed data)

• Synchronization: consistent sequence of actions

• Group addressing: Central server which knows group composition / De-
centralized (members know composition)

• Communcation services: Datagrams (UDP) / Reliable streams (TCP)

• Consistent behavior: ISIS / Horus

4.6.1 Groups of components

• Closed (no external messages) vs. open group (external messages broad-
casted to group members)

• Flat (peer) vs. hierachical group

• Implicit (anonymous, group address implicity expanded) vs. explicit group

4.6.2 Group Management

• Operations: Query names, groupCreate, groupDelete, groupJoun, grou-
pLeave, reading/modifying attributes, read member information

• Management architecture: Centralized (group server), Decentralized (all
components perform management tasks – syncronization), Hybrid (group
manager within lan clusters)

4.6.3 Message dissemination

• Unicast to group members

• Group multicast to whole group

• Inter-group multicast to several groups

• Broadcast to all components (filtering required)

32



4.6.4 Message delivery

• Who gets message? / When is message delivered?

• Atomicity (who?): Exaclty-Once to all recipients; All-or-Nothing to all
group members or none

• Sequence of message delivery: Same sequence for all group members (other-
wise Nondeterminism possible)

– Ordering: synchronous (system-wide global time ordering), loosely
synchronous (consistent time, but no global absolute time)

– Sequencer (total ordering): Sequencer serializes all messages send to
group and determines sequence number, e.g. Apache Zookeeper

– Virtually synchronous ordering: based on before relation
– Sync-ordering: Synchronization points. Synchronously ordered mes-

sages delivered to group members in-sync. Ordering method to syn-
chronize local states

4.6.5 Taxonomy of multicast

See picture page 128

• Unreliable Multicast: No acknowledgement, At-Most-Once semantics, No
ordering

• Reliable Multicast: “best-effort” (at-least-once), B-multicast primitive pro-
cess delivers, if multicaster not crashing, B-deliver primitive similar when
receiveed

• Atomic Multicast: Reliable with atomic gurantee (all-or-nothing)

• Serialized Multicast: Consistent sequence totally vs causually ordered (e.g.
virtually synchronous)

• Atomic, Serialized Multicast: Atomic + Serialized

4.6.6 Group communication in ISIS

• Toolkit for group management, ordered multicast abcast (totally ordered)
& cbcast (causually ordered)

• abcast (atomic broadcast)

– Phase 1: Sender S sends message N with logical timestamp TS(N),
Receivers determine new timestamp Tr(N) and return to S

– Phase 2: S creates new timestamp TS,new(N) = max(Tr(N))+ j
|R| (j

unique identifier of S), S send commit to all r. r deliveres message
according to new timestamp

• cbcast (causual broadcast)

– Vector timestamps
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– Vector specifies number of messages received in sequencece from par-
ticular group members

– Sending appends incremented state vector
– Two conditions for delivery: No message from sender missing, No

other depending message not yet received

4.6.7 JGroups

• Group communication toolkit for Java

• Reliable, atomic ordering

• Group membersihp managment

• Groups identified in channels: channel.connect(“MyGreup”);

• Channel connected to protocol stack (e.g. Sequencer, GMS, Frag, UDP)

4.7 Distributed Concensus
• Distributed processes agree on value (even in case of failure desireable)

4.7.1 Consensus problem

• pi is undecided, value vi proposed

• Processes communicate

• pi sets decision variable di and is decided then

• Properties: termination (algorithm ends), agreement (same value of di),
integrity

• Algorithm (in failure-free environment): Reliable multicast of all processes.
di = majority(p1, p2, ...).

• Properties: Termination/Integrity depending on multicast

4.7.2 Byzantine Generals Problem

• Generals issue commands to lieutnants

• Lieutnants have to agree to attack or to retreat

• Difference to Consensus problem: General supplies value, lieutnants have
to agree on

• Properties: Termination, agreement, Integrity (if general correct, all decide
as he suggests)

4.7.3 Interactive Consistency Problem

• Process suggests single value

• creation of decision vector

• Properties: Termination, Agreement
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4.7.4 Consensus in synchronous networks

• Assumtion f < n processes crash

• Algorithm proceeds in f + 1 round to reach concensus

4.8 Authentacation service Kerberos
• Based on Needham Schröder Protocol

• Client C, Server S, Key distribution center KDC, Ticket granting service
TGS

• C requests service from S.KDC and TGS gurantee secrecy & authenticity
requirements

• TGS ticket issued by KDC to C; Authentifier of C to gurantee valid
communication with S, Session key between C and S

• Problem: Synchronization of clocks

4.8.1 Authentication process

• C → KDC: Request TGS ticket

• KDC → C: TGS ticket

• C → TGS: Request server ticket

• TGS → C: Server ticket

• C → S: Authentifier

• S → C: Authentifier
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5 Web Services
Standard means of communication among distributed applications

5.1 Service Oriented Architecture (SOA)
• Loose coupling and dynamic binding between services (find/publish in

service registry)

• Service well defined, self-contained

• Focus on interface design

• SOA vs. Component Based

– loose integration vs. tight integration
– process-oriented programming vs. code-oriented
– interoperable architecture vs. technical complexity
– build to change vs. buidl to last

5.1.1 Layered Approach

• Mapping of business processes to services

• Application layer, Process layer, Service layer, Component layer, Object
Layer

5.1.2 Adpoting SOA

+ Interopable, Easy data exchange, Easy access, Availability of external ser-
vices, ...

– Different formats, Security issues

• Enterprise Services Bus (ESB): Software architecture / software class for
SOA: Interopability via XML, Web Services interfaces, ... e.g. Mule

5.2 Web Services – Characteristics
• Web Services

– Live somewhere in the network
– Are described using a service description Language (XML)
– Are published to service registry
– Are available through declared API
– Provide entry point accessing local/remote services

• Allow integration of functionality (within/between organizations)

• Features: Programmable, Self descriptive, Encapsulated, Loosely copu-
led, Location transparent, Protoco transparent, Composition, Document-
Centric

36



• Webservices vs. Distributed Objects: Description language (operation, re-
turns, ...), Client stub / Server skeleton, network interations

– Web Services: Stateless, Internet
– Distributed Objects: Stateful, Intranet

5.3 Web Services Architecture
• W3C: Web service is software system identified by URI, interfaces/bin-

dings described using XML, discoverable & interaction possible using
XML messages

• XML: tag data, SOAP: transfer, WSDL: describe services, UDDI: list ser-
vices

• Simpilied: RPC over internet using XML

5.3.1 Interoperability Stack

• Compositional (WS-notification)

• Quality of Experience (WS-Security/Transactions)

• Description (WSDL, UDDI)

• Messaging (XML, SOAP)

• Transport (HTTP, SMTP)

5.3.2 Basic architecture

• Interaction between components as message exchange

• Functions: message exchange, description, publishing/finding

• Web services is interface, service provided by implementation

• Service description: Details of interface / implementation

5.3.3 Roles

• Service Provider

• Service Discovery Agency

• Service Requestor

5.3.4 Operation

• Publish

• Find

• Interact
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5.3.5 Basic Standard Technologies

• WSDL: Simple Object Access Protocol

• UDDI: Web Services Description Language

• SOAP: Universal Description, Discovery and Integration

• Providing & Consuming Service

– Provider describes service in WSDL and publishes to agency
– Requestor queries agency to locate service/communication methods
– Agency sends service description
– Requestor sends request based on WSDL
– Provider sends request based on WSDL

5.3.6 Message Exchange Patterns

• eg. one-way, request/response, broadcast

• Peer-to-Peer: Each web service acts as requestor and provider

• Direct interaction: Requestor & discovery agency fulfilled by the client

• Intermediary (web server between requestor & provider): Additional func-
tions such as routing, security management

5.4 Simple Object Access Protocol (SOAP)
• simple, lightweight XML messaging

• no specific protocol

• RPC or document transfer

5.4.1 Parts

• Envelope

• Encoding Rules

• Convention for RPCs and responses

• SOAP message: Envelope (XML namespaces), SOAP header (optional),
SOAP body (payload e.g. method name & arguments)

5.4.2 Exchange Model

• One-way transmission. Interaction is combination of SOAP messages.

• Processing messages: Interpret message for application and “SOAP ac-
tor”; Verify mandatory parts; (Remove parts from step one and forward
message)
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5.4.3 SOAP in HTTP

• HTTP request & response used for SOAP request & response

• Media type “text/xml”

• Interpretation of request by webserver/servlet/...

5.4.4 SOAP RPC Conventions

• RPC interactions mapped to SOAP (Converted through middleware)

• e.g. (Simpilied): <nameSpace:functionName ...><arg ...>value</arg></nameSpace:functionName>

5.4.5 SOAP-Router

• Deliver through series of nodes; Move messages between networks

• May provide: logging, auditing, security enforcement

• WS_Routing protocol

5.5 Web Services Description Language (WSDL)
• Defines service as colletion of network endpoints / ports (compare IDL)

• Describes: Functionality of a service (arguments), Accessability of a service
(protocols), Location of a service (URI)

5.5.1 WSDL Information model

• Types: Container for non build-in types

• Message: Definition of transferred data

• Port Type: Set of operations per endpoint

• Operation: Supported actions (input/output message)

• Binding: Protocol, data format, port type

• Port: Binding + network address

• Service: collection of related endpoints

5.5.2 Parts

• Abstract (What is offered?): Types, message, operation, port types

• Concrete (Where/How is it offered?): Bindings, services, ports

• See picture page 159

• Relationship: XML definitions; Operations supported by WebService; Bin-
dings connect port types to port
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5.5.3 Generate code from WSDL

• WSDL compiler can create e.g. Java interface

• WSDL documents from API / Stubs & Skeletons from WSDL document

5.5.4 Bad Practices

• Bad names and comments

• Port Types tied to protocols

• Unrelated operations placed in single port type

• Overload output messages

5.6 Universal Description, Discovery and Integration (UD-
DI)

• Services for description/discovery of businesses, services, interfaces

• UDDI is web services itself (can be described by UDDI)

5.6.1 UDDI Business Registry System

• Wite Pages: Basic information (Name, ... of company & its services)

• Yellow Pages: Detailed business data & web services

• Green Pages: Information how web service can be invoked

5.6.2 UDDI Entities

• UDDI can store & manipulate four main types of entities

• businessEntity: Owner of web service (name, key, services, ...)

• businessService: Group of Web Service(s) (name, key, binding, ...)

• bindingTemplate: Single WebService (key, access point)

• TModel WSDL interface types (name, key, URI to data)

5.6.3 UDDI Registry API

• 3 main user types: Providers, requesters, other registries

• Inquiry API: find_service, get_serviceDetail

• Publishers API: save_service, delete_service

• Security API: get/discard authentication tokens

• Ownership Transfer API

• Subscription API: Monitoring changes in registry

• Replication API: Replication between registries
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5.7 Representational State Transfer (REST)
• Principles of using standards as HTTP, URIs and Mime Types

• Resource has ID, URIs to identify item of interest

• Link resources together

• Standard methods get/post/put/delete

• Stateless communication

• Resources with multiple representation: client chooses

5.8 Web Service Composition
• Choice of granularity

• Composition of complex services from smaller ones

5.8.1 Dimensions to handle complexity

• Component model: Sub-services

• Orchestration model: Order of sub-services (e.g. WS-Coordination)

• Data access model: Data Exchange

• Transactional models: Transactional semantics (WS-Transactions)

• Exception Handling: Handle errors

5.8.2 Web Service Orchestration

• Transparent Chaining: Client determines usage

• Translucent Chaining: Worklow services invokes services in order (Status
propagation to client)

• Opaque chaining: Aggregate service invokes services (no client awareness)

5.9 Adopting Web Services
5.9.1 Example Web Services

• Amazon E-Commerce Service (ECS): Amazon product database, SOAP/-
REST, search/similarity lookup, remote shopping

• XMethods: Clearinghous for web serives
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5.9.2 Apache Axis

• Environment to implement web services

• APIs for invoking SOAP & manipulating SOAP objects

• WSDL compiler and data bindings for Java classes

• Hosting mechanisms & transport framework

• Axis2: Java based implementation + REST

5.9.3 Web Services & Java

• Several Java APIS for web services

• SAAJ, JAX-WS, JJWSDL, JAXR, JAXP, XWSS

5.9.4 Distributed Process Architecture

• Client ↔ adapter/application server ↔ application

5.9.5 Semantic Web Services

• Semantic meta-data to automate discovery / interaction with web services

• Map-Service: Input (int, int), Output gif – (x, y) is what? Kind of map?

• Candidate: OWL-S (Ontology Web Language for Web Services)

5.10 Mashups
Create new applications by combining existing ones

5.10.1 Mashup Techniques

• Mashing on the Web Server: Browser just waits for response, Browser
decoupled from supply pages, Web server as proxy serves entire page,
Scalability problems

• Mashing using Ajax: Work divided between server and browser, Complex,
Browser navigation bypassed, Browser doing most work, All data routed
through server

• Mashing with JSON: Browser communicates with source, handling of pre-
made JSON objects, no data consolidation on server

5.10.2 Development Support

• Component model: Characteristics of mashup components give interface.
Properties: type (data, logic, ui), interface (CRUD, API, IDL/WSDL),
extensibility (user may extend component model?)

• Composition model: How components ordered – flow-based vs. event-based

• Example-tool: Yahoo Pipes
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6 Design of distributed applications
• Specification of software structure: small, distributed components (local

vs. remote), testing

• Name resolution: remote services

• Communication: client-server vs. peer-to-peer, network errors

• Consistency: replicated data, cache, interface Consistency

• User requirements: functionality, non-functional requirements, security,
client errors, heterogenity

6.1 Steps in design
• Identify repositories

• Data assigment to modules

• Define module interface

• Define network interface

• Classify module as client/server

• Registration of servers (which are available)

• Strategy for binding process

6.2 Development environment
6.2.1 Open Distributed Processing (ODP)

• Standards for distributed systems (e.g. ISO/OSI reference model)

• Complexity reduction using abstraction levels (viewpoints)

– Enterprise: overall goals
– Information: structure, controll/access of information
– Computation: logical distribution
– Engineering: physical distribution
– Technology: different systems (network, hardware)

6.2.2 Model Driven Architecture (MDA)

• Object Management Group (OMG) Standard

• Model: Description of system (part) in well-defined (syntax, semantics)
language (automatic interpretation possible)

• MDA concept:

– Development of platform independent models (PIMs) – business func-
tion, components, classes, conditions, semantics – UML diagrams
(use cases, class, sequence, ...)
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– Mapping to platform dependent models (PSMs) – Realization of soft-
ware in UML

– Implementation, Integration & Testing – Code generation (Use of
tools possible)

– AutoFocus: Tool to specify distributed systems – hierachical descrip-
tion, platform independent development, requirement Analyses, De-
sing modelling, interactive simulation, code generation

6.3 Service-Oriented Modeling
• Transfer service approach to design/modeling of software systems

• Service-oriented modeling (SOM): model SOA systems

• Service-oriented modeling framework (SOMF): development life cycle me-
thodolgy, universal language

6.3.1 Service Evolution

• Conceptual service: idea / concept

• Analysis service: unit of analysis

• Design service: design entity

• Solution service: physical solution (to be deployed)

6.3.2 Life Cycle Structure

• Elements for service development / operations

• Timeline: life span of service

• Events: predicted / unexpected events during life span (begining + dura-
tion)

• Seasons: design-time / run-time

• Disciplines: Identify best practices – season disciplines (service orinted
conceptualization) vs. continuous disciplines (service portfolio manage-
ment)

6.3.3 Life Cycle Modeling

See Picture page 182

• Conceptual: Identify concepts

• Discovery & analysis: Granularity, reusability, coupling, ...

• Business integration: Integration in business (organization, IT, ...)

• Logical design: Service relationships, message exchange, ...

• Conceptual architecture: SOA design, environment, technological stack

• Logical architecture: Integrate SOA assets, depentencies, service reuse, ...
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6.3.4 SOM Framework

See image on page 183

45



7 Distributed file service
7.1 Introduction

• Replication & concurrency control

• Distributed file system: logical colletion of files on different computers into
common file system & storage computers connected through network

• Distributed file service: set of services supported bi distributed file systems

• File server: executon of file service software on computer

• Allocation: placement of files on different computers

• Relocation: changes of file allocation

• Replication: multiple copies of file on several computers (Relication degree
REPd of file d is total numbers of copies)

• Motivation: Network traffic / response times / availability / fault tolerance
/ parallel processing ⇒ Transparency

7.1.1 Consistency types

• Internal Consistency: Single file copy consistent (2-phase commit)

• Mutual Consistency: All copies identical (multiple copy update protocol)
– Strict (All copies same state), Loose (All copies converge to same con-
sistent state)

7.1.2 Replica placement

• Permanent replicas: decided in advance (e.g. mirroring)

• Server-initiated replicas: enhance server performance (reduce server load,
migrate to server near clients)

• Client-initiated replicas: caches (improve access time, placed on client,
limited time)

7.2 Layers of a distributed file service
• Naming / Directory service: placement / relocation of files, server loca-

lization

• Replication service: response times / availability / consistency / multiple
copy update

• Transaction service: group operations to transaction / concurrency control
/ error reboot

• file service: read / write operations

• block service: access / allocate disk blocks
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7.3 Update of replicated files
7.3.1 Optimistic concurrency control

• No user constraints, access to inconsistent data

• Available copy: read local / best-available file copy, write all file copies

• Example: Coda file system (Carnegie-Mellon University)

7.3.2 Pessimistic concurrency control

• Allways access consistent data (data-critical applications)

• Multiple copy update

– nonvoting
* primary site: primary site serializes/synchronizes operations
* token passing: access possible if client has token

– voting: negotiation result determines access (global consent)
* majority voting
* weighted voting

7.3.3 Voting schemes

• REPd replicas of file d

• sg(r) weight of computer r ∈ K

• Sum of weights SUM =
∑

r∈K sg(r)

• Votum: sum of votes voted for access

• Quorum (R,W ): lower bound where acces is granted

• Multiple-reader-single-writer: R+W > SUM , W +W > SUM

• Write-All-Read-Any: W = n, R = 1

• Majority consenus: W = R = REP
2 + 1 if REP even; W = R = REP+1

2 if
REP odd

• Weighted voting: W = R = SUM
2 + 1 if SUM even; W = R = SUM+1

2 if
SUM odd

7.4 Coda file system
• scalable, secure, available distributed file system

• mobile use, organization in (replicated) volumes
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7.4.1 Architecture

• Picture page 192

• Venus processes provide access to remote files (comparable to NFS client)

• Allows to continue if access is impossible

7.4.2 Naming

• Each file exactly in one volume, physical vs. logical (all volume replicas)

• Replicated Volume Identifier (RVID) for logical volumes

• Volume Identifier (VID) for phyical volumes

• File identifier (96-bit)

• See picture page 193

7.4.3 Replication strategy

• Client caching: cache complete file when opened, server records callback
promise for client, update on client ⇒ server notification ⇒ Invalidation
to other clients

• Server replication: Volume Storage Group (VSG): servers that have copy
of volume, Accessible VSG (AVSG): servers available for client, read-one,
write-all update protocol

• Coda version vector (CVV): optimistic strategy, CVV vector timestamp
initalized to [1, ..., 1], On file close Venus breadcasts update messages to
servers in AVSG, if for two CVVs neither v1 ≤ v2 nor v2 ≤ v1 ⇒ conflict

7.4.4 Disconnected operation

• Client resorts to local copy, priority list for cache (hoarding possible)

• AVSG = {}

• Reintegration: Send update operations to AVSG servers for updated files
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8 Distributed Shared Memory (DSM)
• Abstraction for processes who do not share physical memory

• DSM appears as memory in processes’ address space

8.1 Programming model
• Direct access to variables (no marshalling)

• DSM possible if non overlapping lifetimes

• Implementation: Hardware (Shared memory multiprocessor architecture
e.g. NUMA) vs. Software (e.g. Linda Tuple Spaces / JavaSpaces)

8.2 Consistency model
• Local caching possible ⇒ Consistency?

• Write-Update: Local updates multicasted

• Write-Invalidate: Send invalidate, acknowledgement (block all other ac-
cess), update, send updated copy

8.3 Tuple space
• Originally for Linda language

• Set of tuples interpreted as list of typed fields

• Based on shared memory, tuple stores information

8.3.1 Atomic operations

• out(t) creates new tuple

• in(t) reads tuple and deletes

• read(t) reads tuple

• eval(p) generates new process

• Synchronous in/read, Asynchronous inp/readp

8.3.2 Tuple space implementation

• Central tuple space

• Replicated tuple space (each computer has complete replica)

• Distributed tuple space / subspaces (out operations performed locally)

8.3.3 Exapmle program

Client out, Server in, Server out, Client in
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8.4 Object Space
• Shared, network-accessible object repository

8.4.1 Features of JavaSpaces

• Objects passive: objects not manipulated / run in space

• Shared spaces: network-accessible memory, many remote processes inter-
act concurrently

• Persistent spaces: stored until removed / lease time run out

• Associative spaces: objects accessed via associative lookup

• Transaction oriented spaces: atomic opreations

• Spaces support exchange of executable code

8.4.2 Data structures

• Entry interface (Serializable) for objects in space (ne.jini.core.entry), ex-
tended by classes storing variable values. Public constructor setting varia-
bles

• SpaceAccessor: JavaSpace s = SpaceAccessor.getSpace(); spaces Jini ser-
vice / RMI lookup

8.4.3 Basic operations

• read, take (read, remove), write, notify (notify process matching entry has
arived, can be requested)

• write: Lease write (Entry e, Transaction txn, long lease) throws Remote-
Execption, TransactionException

• read and take: read remote object and copy to local process + remove from
space, process needs template. SharedVar template = new SharedVar();
SharedVar result = (SharedVar) space.take(template, null, Long.MAX_VALUE);
If several matching objects, any can be selected, waiting till entry available

• Matching rules: template class matches or is super class, if template field
is null, matches any value, if field is specified, objects field must match

• Atomicity: Basic operations are atomic ⇒ No race-conditions (if take is
used for editing objects)
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9 Object-based Distributed Systems
9.1 Object Management Architecture (OMA)

• Also: Common Object Request Broker Architecture (CORBA)

• possible middleware for object-oriented distributed applications

• ORB communication through request/reply protocol. Only mediates bet-
ween application objects (localization, messages delivery, ...)

9.2 Object Request Brokers (ORB)
• Connects distributed objects at runtime

• Support invocation of distributed objects

9.2.1 Features

• Static (interface determined on compiling) & dynamic (interface determi-
ned at runtime) invocations

• Interfaces for higher programming language

• self-descriptive

• location transparcency

• security checks

• polymorphic method invocation (execution depends on objects instance)
– ORB calls objects method (vs. RPC calls server function)

• hierachical object naming

9.2.2 ORB structure

• Picture page 209

• components

– ORB core (kernel): mediates request between client/server, network
communication

– Static invocation interface: determine operations/parameters on com-
pilation

– Dynamic invocation interface: identical for all ORB implementation
(only one dynamic interface)

– ORB interface: ORB service calls (conversion object reference to
strings)

– Interface repository (signature of methods for dynamic invocation)
– Object adapter: brige between CORBA/IDL interfaces and programming

language interfaces
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– Runtime repository: information about server (supported) object (clas-
ses)

– Skeletons: language of server created by IDL compiler (several static,
one dynamic skeleton)

• Embedding in distributed applications

– ORB as library
– e.g. ORBIX & TAO

9.3 Common object services
• System level services extend ORB functionality

• Life-cycle Service: create, copy, migrate, delete objects

• Persistence: object storage e.g. databases

• Name: locate objects by name e.g. LDAP

• Event: register events

• Concurrency Control: lock manager

• Transaction: 2-phase commit coordination

• Relationship: create relations between objects, navigation, referntial inte-
grity

• Query: SQL operations

9.4 Inter-ORB protocol
communication between ORBs based on General Inter-ORB protocol (GIOP)

9.4.1 GIOP Features

• Message formats (request, reply) + common data representation (CDR)

• Remote object references

• Internet Inter-ORB Protocol (IIOP) is GIOP via TCP/IP

9.4.2 External data representation

• Primitive data types: char, octet, short, ...

• Complex data types (typeCodes: struct, union, sequence (Format descri-
bed in interface repository)

9.4.3 Object reference

• Identifies object accessed via IOP

• Object reference (IOR profile): IP host address, TCP port, object key
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9.4.4 GIOP message

• components: head, header, content

• head: same format for all message types, identifies message type

• message types: Request, Reply, CancelRequest, LocateRequest (destina-
tion of object reference), LocateReply, CloseConnection, MessageError,
Fragment

9.4.5 RMI over IIOP

• Java Remote Method Protocol (JRMP) for RMI (Java specific) ⇒ i.e. no
interoperability with CORBA (any language)

• RMI-IIOP uses JNDI to register objects by names

• Java IDL for CORBA (no JRMP, no RMI)

9.5 Distributed Component Object Model (DCOM)
• COM: Process library, Support development of dynamic components (dll,

.exe)

• DCOM: COM + process communication with remote processes, access
transparency

9.5.1 Object Model

• DCOM object: implementation of interface with unique, 128-bit Interface
Identifier (IID)

• Only binary interfaces (table with pointers to implementation)

• Class instances, transient

9.5.2 Architecture

• Library specifies method signature

• Registry records maping remote call + local file

• Service control manager (SCM) activates objects

• Proxy marshaller transforms code to network stream

• Client proxy unmarshals objects
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9.5.3 Object Invocation Model

• Remote-invocation model (synchronous/blocking)⇒ Canel object to can-
cel

• Client reference to remote object via interface pointer (proxy implemen-
tation), How forward reference? Image S 219

• Cobmination with Microsotf Transaction Server (MTS) & Microsoft Mes-
sage Queue Server (MSMQ) to COM+ (Transaction, integration into Win-
dows)

9.6 .NET-Framework
• Windows framework for distributed applications

• Mainly: Common Language Runtime (CLR) + Framework Class Libary

9.6.1 CLR

• Runtime environment for different languages: memory + thread manage-
ment

• Encapsulate access to OS functions

• Common intermediate language (MSIL)

• Common Type System (CTS): Possible datatypes / programming con-
structs uniformly interpreded for interoperability

9.6.2 Frame Class Library

• Common functions for all languages in .NET framework (file access, da-
tabase interaction)

• Hieracrchy of namespaces (System.Object)

9.6.3 .NET-Remoting

• Remote method invocation (System.Runtime.Remoting)

• Different tarnsport protocols (TCP, HTTP)

• Activation of remote objects
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