
Distributed Applications
TUM Summer Term 2014
Lecturer: Prof. Schlichter

Janosch Maier

5. Juni 2014

1

Inhaltsverzeichnis
1 Introduction 7

1.1 Background . 7
1.1.1 Internet Computing . 7
1.1.2 Enterprise Computing . 7

1.2 Key Characteristics of Distributed Systems 7
1.2.1 Motivation . 7
1.2.2 Definitions ’Distributed System’ 7
1.2.3 Methods of Distribution 8
1.2.4 Properties of Distributed Systems 8
1.2.5 Challenges of Distributed Systems 8
1.2.6 Examples for Development Frameworks 8

1.3 Distributed Applications . 8
1.3.1 Definition . 9
1.3.2 Interfaces . 9
1.3.3 Distributed vs. parallel programs 9

1.4 Influential Distributed Systems 10
1.4.1 Mach . 10
1.4.2 NFS . 10
1.4.3 J2EE . 10
1.4.4 Google . 11

2 Architecture of distributed systems 12
2.1 System models . 12

2.1.1 Architectural model . 12
2.1.2 Interaction model . 12
2.1.3 Failure model . 12
2.1.4 Security model . 12

2.2 Transparency . 13
2.2.1 Goals for distributed applications 13

2.3 Paradigms for distributed applications 13
2.3.1 Information Sharing . 13
2.3.2 Message exchange . 13
2.3.3 Naming entities . 14
2.3.4 Bidirectional communication 14
2.3.5 Producer-consumer interaction 14
2.3.6 Client-server model . 15
2.3.7 Peer-to-peer model . 15
2.3.8 Group model . 15
2.3.9 Publish-Subscribe model 15
2.3.10 Taxonomy of communication 16
2.3.11 Levels of Abstraction . 16

2.4 Client-server model . 16
2.4.1 Terms and Definitions . 16
2.4.2 Concepts for client-server applications 17
2.4.3 Processing of service requests 17
2.4.4 File service . 17
2.4.5 Time service . 17
2.4.6 Name service . 17

2

2.4.7 Lightweight Directory Access Protocol (LDAP) 18
2.4.8 Failure tolerant services 19

3 Remote Invocation (RPC/RMI) 20
3.1 Introduction . 20

3.1.1 Local vs. remote procedure call 20
3.1.2 Definition . 20
3.1.3 RPC properties . 20

3.2 Distributed applications based on RPC 21
3.2.1 Distributed application 21
3.2.2 RPC language . 21
3.2.3 Phases of RPC based distributed applications 22

3.3 Remote Method Invocation (RMI) 22
3.3.1 Definitions . 22
3.3.2 RMI characteristics . 22
3.3.3 RMI architecture . 23
3.3.4 Locating remote objects 23
3.3.5 Developing RMI applications 23
3.3.6 Parameter Passing . 23
3.3.7 Distributed grabage collection 24

3.4 Servlets . 24
3.4.1 Servlet Properties . 24
3.4.2 Servlet lifecycle . 24
3.4.3 HttpServletInterface . 24

4 Basic mechanisms for distributed applications 25
4.1 External data representation . 25

4.1.1 Marshalling & unmarshalling 25
4.1.2 Centralized transformation 25
4.1.3 Decentralized transformation 25
4.1.4 Common external data representation 25
4.1.5 XML as common data representation 26
4.1.6 Java Object Serialization 26

4.2 Time . 26
4.2.1 Introduction . 26
4.2.2 Synchronizing physical clocks 27

4.3 Distributed execution model . 28
4.3.1 Events . 28
4.3.2 Ordering by logical clocks 29
4.3.3 Logical clocks with scalar values 29
4.3.4 Logical clocks with vectors 29

4.4 Failure Handling in distributed applications 29
4.4.1 Testing distributed applications 30
4.4.2 Debugging of distributed applications 30
4.4.3 Approaches of distributed debugging 30

4.5 Distributed transactions . 30
4.5.1 Isolation . 30
4.5.2 Atomicity and persistence 31
4.5.3 Two-phase commit Protocol (2PC) 31
4.5.4 Extended 2PC . 31

3

4.5.5 Distributed Deadlock . 31
4.6 Group communication . 32

4.6.1 Groups of components . 32
4.6.2 Group Management . 32
4.6.3 Message dissemination . 32
4.6.4 Message delivery . 33
4.6.5 Taxonomy of multicast . 33
4.6.6 Group communication in ISIS 33
4.6.7 JGroups . 34

4.7 Distributed Concensus . 34
4.7.1 Consensus problem . 34
4.7.2 Byzantine Generals Problem 34
4.7.3 Interactive Consistency Problem 34
4.7.4 Consensus in synchronous networks 35

4.8 Authentacation service Kerberos 35
4.8.1 Authentication process . 35

5 Web Services 36
5.1 Service Oriented Architecture (SOA) 36

5.1.1 Layered Approach . 36
5.1.2 Adpoting SOA . 36

5.2 Web Services – Characteristics 36
5.3 Web Services Architecture . 37

5.3.1 Interoperability Stack . 37
5.3.2 Basic architecture . 37
5.3.3 Roles . 37
5.3.4 Operation . 37
5.3.5 Basic Standard Technologies 38
5.3.6 Message Exchange Patterns 38

5.4 Simple Object Access Protocol (SOAP) 38
5.4.1 Parts . 38
5.4.2 Exchange Model . 38
5.4.3 SOAP in HTTP . 39
5.4.4 SOAP RPC Conventions 39
5.4.5 SOAP-Router . 39

5.5 Web Services Description Language (WSDL) 39
5.5.1 WSDL Information model 39
5.5.2 Parts . 39
5.5.3 Generate code from WSDL 40
5.5.4 Bad Practices . 40

5.6 Universal Description, Discovery and Integration (UDDI) 40
5.6.1 UDDI Business Registry System 40
5.6.2 UDDI Entities . 40
5.6.3 UDDI Registry API . 40

5.7 Representational State Transfer (REST) 41
5.8 Web Service Composition . 41

5.8.1 Dimensions to handle complexity 41
5.8.2 Web Service Orchestration 41

5.9 Adopting Web Services . 41
5.9.1 Example Web Services . 41

4

5.9.2 Apache Axis . 42
5.9.3 Web Services & Java . 42
5.9.4 Distributed Process Architecture 42
5.9.5 Semantic Web Services . 42

5.10 Mashups . 42
5.10.1 Mashup Techniques . 42
5.10.2 Development Support . 42

6 Design of distributed applications 43
6.1 Steps in design . 43
6.2 Development environment . 43

6.2.1 Open Distributed Processing (ODP) 43
6.2.2 Model Driven Architecture (MDA) 43

6.3 Service-Oriented Modeling . 44
6.3.1 Service Evolution . 44
6.3.2 Life Cycle Structure . 44
6.3.3 Life Cycle Modeling . 44
6.3.4 SOM Framework . 45

7 Distributed file service 46
7.1 Introduction . 46

7.1.1 Consistency types . 46
7.1.2 Replica placement . 46

7.2 Layers of a distributed file service 46
7.3 Update of replicated files . 47

7.3.1 Optimistic concurrency control 47
7.3.2 Pessimistic concurrency control 47
7.3.3 Voting schemes . 47

7.4 Coda file system . 47
7.4.1 Architecture . 48
7.4.2 Naming . 48
7.4.3 Replication strategy . 48
7.4.4 Disconnected operation 48

8 Distributed Shared Memory (DSM) 49
8.1 Programming model . 49
8.2 Consistency model . 49
8.3 Tuple space . 49

8.3.1 Atomic operations . 49
8.3.2 Tuple space implementation 49
8.3.3 Exapmle program . 49

8.4 Object Space . 50
8.4.1 Features of JavaSpaces . 50
8.4.2 Data structures . 50
8.4.3 Basic operations . 50

5

9 Object-based Distributed Systems 51
9.1 Object Management Architecture (OMA) 51
9.2 Object Request Brokers (ORB) 51

9.2.1 Features . 51
9.2.2 ORB structure . 51

9.3 Common object services . 52
9.4 Inter-ORB protocol . 52
9.5 Distributed Component Object Model (DCOM) 52
9.6 .NET-Framework . 52

6

1 Introduction
1.1 Background

• Production flows (manufacturing)

• Money flow (banking)

• Information flow

1.1.1 Internet Computing

• Shared Resources

• Information Communication

• Activity Coordination

• Examples: Online flight-reservation, ATMs, WWW, Grid Computing, ...

1.1.2 Enterprise Computing

• Applications ↔ Network ↔ Database Systems

• Close coupling of applications on heterogenous platforms over network

• Reliability: Consistency, Security / Privacy, Response time, Error toleran-
ce, Autonomy of components

1.2 Key Characteristics of Distributed Systems
1.2.1 Motivation

• Cheaper processors, storage

• High bandwith

• Complex applications

• Cooperative applications (CSCW)

1.2.2 Definitions ’Distributed System’

• Tanenbaum: Independent computers appearing as single computer

• Lamport: Stops work if machine unknown to user crashes

• Working Definition: Hardware and software of network computers com-
municate & ccordinate actions (through messages)

7

1.2.3 Methods of Distribution

• Hardware components

• Load

• Data

• Control (e.g. distributes os)

• Processing (e.g. map-reduce-algorithm)

1.2.4 Properties of Distributed Systems

• Existence of multiple functional units (physical, logical)

• Distribution of functional units

• Independent breakdown of units

• Distributed component control

• Transparency (unit distribution hidden to user)

• Cooperative autonomy

1.2.5 Challenges of Distributed Systems

• Heterogenity (of networks, hardware, os, languages, ...) ⇒ Middleware
needed

• Openness ⇒ Standardized interfaces

• Scalability

• Security & Privacy

1.2.6 Examples for Development Frameworks

• NFS – Network File System (SUN)

• ONC – Open Network Computing (SUN)

• ODP – Open Distributed Processing (ISO)

• CORBA – Common object Request Broker Architecture (OMG)

• J2EE – Java 2 Platform Enterprise Edition (SUN)

• .NET – Framework (Microsoft)

1.3 Distributed Applications
Set of cooperating, interacting functional units ⇒ Parallelism, Fault tolerance,
Inherent Distribution

8

1.3.1 Definition

• Application A, split into components A1, ..., An;n ∈ N, n > 1. Each Ai

has internal state (data) and operations

• Components Ai are autonomous, can be assigned to different machines Fi

• Components Ai exchange information via network

1.3.2 Interfaces

• Well-defined interaction points between components

• Specify component operations and commpunication

– Parameters (+ types)
– Results (+ type)
– Side-Effects (e.g. data entry)
– Effects on subsequent operations
– Constraints

Abbildung 1: Interfaces between two applications

1.3.3 Distributed vs. parallel programs

• Distributed

– Ganularity: Coarse
– Data Space: Private
– Failure Handling: In communication protocol

• Parallel

– Ganularity: Fine
– Data Space: Shared
– Failure Handling: Not considered

9

1.4 Influential Distributed Systems
1.4.1 Mach

• OS from Carnegie-Mellon Univeristy for Multiprocessor / Distributed Ap-
plications

• Goals: Unix-Emulation, Transparency, Portability

• Architecture: Process with execution environment for secure resource ac-
cess, Threads as distribution unit (Thread on single system), Shared-
Memory-Objects possible (Copy-on-Write)

• Message Exchange through ports (protected by capabilities), Network
messages possible

1.4.2 NFS

• Distributed File Management (e.g. on Unix)

• Characteristics: Server Exports (/etc/exports), Client Mounts (Host, Re-
mote Path, Local Path), Automounter on access possible, Access Trans-
parency

• Implementation: RPC calls between systems, UDP or TCP possible, sta-
teful (used to be stateless)

1.4.3 J2EE

• Distributed application server environment

• Objectives: Standardized programming environment for enterprise appli-
cations, Java-based, Component-based, Network-oriented, Runtime infra-
structure + Java extensions APIs

• Architecture: Application server (runtime environment), J2EE container,
data storage

• Enterprise Java Beans (EJB): server-side managed infrastructure, bean
offers business interfaces, 3-tier applications

• J2EE container: runtime environment for application, API access, e.g.
JavaServlets within WebContainer

• J2EE application: Modules with application components e.g. jar-file

• Java Server Pages: XML-like-tags, e.g.:

<\% code fragments \%>
<\% i f (value . getName() . length != 0) { \%>

<H2>The value i s : <\%= value . getName()\%></H2>
<\%} e l s e {\%>
<H2>Value i s empty</H2>

<\% }\%>

10

1.4.4 Google

• One of largest distrubited systems toda

• Physical infrastructure: Commodity pcs in racks in clusters in data centers

• Middleware: Buffers + publish/subscribe

• Distributed Computation: map-reduce-algorithms

11

2 Architecture of distributed systems
2.1 System models
Describtion of a distributed system

2.1.1 Architectural model

Interaction between components, mapping to network

• Software layers: applications / services, middleware, operating system,
computer / network devices

• Middleware: Provide homogenity for programming: Hide (communicati-
on) complexity, communication, persistence, trinsaction, ..., Categories:
distributed component, peer-to-peer

• System architecture: Client-Server, Proxy server, Peer process, Communi-
ty of software agents

2.1.2 Interaction model

Performance and time-limits

• No single global time ⇒ Logical clocks for synchronization

• Different order of messages at different recipients

• Consistent ordering

2.1.3 Failure model

How can failure occure + handling

• Crash fault: Hardware / Software failure

• Message lost: Buffer overflow, Router congestion

• Fail stop failures: System crashes, Partners are notified

• Timing failures: Clock not sychronized, Transmission timeout

• Arbitrary failures: Process steps not run / unintendetly run / wrong mes-
sages

• Malicious Byzantine failures: Messages replay, Program modification

2.1.4 Security model

Possible threats + handling

• Secure communication

• Unauthorized access

• Message authentication

12

2.2 Transparency
• Location Transparency: Location of object (resource or service) is in ds-

tributed system

• Access Transparency: Access to object independent from their location

• Replication Transparency: User unaware if object is replicated (e.g. for
fast access)

• Migration Transparency: Object’s location might change without influen-
cing application behavior

• Host Migration Transmission: Same environment for cumputer indepen-
dent from subnetwork (offline/online migration possible)

• Language Transparency: Interaction between components independent from
programming language

• Failure Transparency: Partial failures masked by system

• Concurrency Transparency: Shared access to objects possible

• Execution Transparency: Processes may be run on different runtime sy-
stems

• Performance Transparency: Dynamic reconfiguration for load balancing

• Scalability Transparency: Scaling possible without structural / algorithmic
changes

2.2.1 Goals for distributed applications

• Realization of several transparency levels

• Problem CSCW: Not always group awareness, Selective transparency: lo-
cation & access but NO strict concurrency transparency.

2.3 Paradigms for distributed applications
2.3.1 Information Sharing

• Communication using shared, integrated information managements

• No direct communication (shared memory)

2.3.2 Message exchange

• Interprocess commpunication (IPC): Message between sender and receiver

• send(E: receiver, N: message);

• receive(S: sender, B: buffer);

• Sender / Receiver perspective possible

• Asynchronous message exchange (nonblocking)

13

– S resumes processing, after N is put to message queue / message
buffer (NP)

– E repears receive operation until message arrives
– Advantages: real-time, paralle execution, event signaling possible
– Disadvantages: buffer management, notification of failures, design dif-

ficult

• Synchronous message exchange (blocking)

– S blocked until E has received message
– E is blocked until N is completely loaded to NP
– Decoupling to avoid endless waiting: timeout, threads for message

handling

• Remote-invocation send: S suspends execution until E has recieved and
processed request which was part of sent message

2.3.3 Naming entities

• Names: unique character string refering an entity, invokation points bound
to names (addresses, e.g. Apache bound to hostname)

• Name space: Organization of names, hierachical, labeled directed graph,
absolute vs. relative patkh names

• name resolution: lookup of names

2.3.4 Bidirectional communication

• Request-answer scheme for message exchanges

• Sockets as low level abstraction: os-controlled interface for applications,
identification: ip, port

• Call semantics: dealing with message loss, crash of S or E

– at-least-once semantics: Operation processed once or several times
– exaclty-once semantics: Processed once; result stored in case of lost

answer
– last semantics: Processed onece or several times; only last processing

produces result
– at-most-once semantics: Processed once or not at all. If processesd,

similar to exaclty-once

2.3.5 Producer-consumer interaction

• Fire & forget interaction: Producer (S) directly resumes execution

• Special case: Piping (After sending, producer terminates)

14

2.3.6 Client-server model

• Central server provides service to requesting clients

• Request-Answer Interaction: Handshaking principle – Client suspends till
server returns request response

• Service-oriented architecture (SOA): abstract archtectural approach – loo-
se coupling / dinamic binding, modularized software, service manages its
own data, 3 roles: service requestor, provider & registry, Web services
moslty SOA

• E.g. webserver: stateless (session handlung on application layer)

2.3.7 Peer-to-peer model

• All processes similar role: cooperative interaction, no clients/servers

• client-server (server maintainance, client fewer resources) vs. p2p (similar
resources for each peer, direct communication)

• Issues: Peer discovery, data location, file exchange, security/privacy

• Napster: Central server with music list

• Gnutella: no server directory – loose federation of gnutella computers,
On connection at least one address needed, Find a file: send request to
neighbours, propagate through network

• BitTorrent: recipients also propagate data to newer recipients

• eDonkey: Files identifieds compound md4 hash sums

• Gossip-based Approach: Information propagation similar to epidemic de-
seases: exponential rate: everybody tells one pearson in each step⇒ Spre-
adrate 1.8k after k rounds. Combination of push and pull works best,
robust & scalable algorithm

2.3.8 Group model

• Combine set of components into group (e.g. Service provided by group of
servers)

• Important: Shared problem, information exchange, group awareness, corr-
dination

• Used in CSCW

2.3.9 Publish-Subscribe model

• Publish structured events

• Subscribe to particular events

• System matches subscribtions against events and sends notifications: he-
terogenous environment, asynchronous notifications)

15

2.3.10 Taxonomy of communication

• Message serialization: Messages to group are received in different order

• One sender:

– Arrival time by receiver
– Sequence number by sender
– Own serialization criteria by receiver

• Several senders

– No serialization
– Loosely-synchronous: Loosely synchronized global time
– Virtualle-synchronous: Order determinde by causal interdependenci-

es (N send after M received, N might depend on M)
– Totally ordered: By token / By coordinator

2.3.11 Levels of Abstraction

• Object Space, Collaborative applications

• Network services, Object request broker

• Remote procedure call, Remote Method invocation

• Client/Server, P2P

• Message Passing

2.4 Client-server model
Implements Handshaking principle

2.4.1 Terms and Definitions

• Sender/Receiver: Message exchanging vs Client/Server: Entities in specia-
lized protocol

• Client: process (application) running on client machines, (typically) re-
quest for service operations (a priori unknown)

• Service: Software providing service operation running or one ore multiple
machines

• Server: Subsystem providing service to clients. Executes software on server
machine. Server machine can host multiple server subsystems

• Client-Server interfaces

– Client interface / import interface: represents server within client
– Server interface / export interface: represents all potential client wi-

thin server

• Multitie architecture: One machine as client&server between actual client
and server (e.g. webserver between browser and application server)

16

2.4.2 Concepts for client-server applications

• Remote data storage: NFS (Client: presentation & execution – Server:
database)

• Remote presentation: X window system (Client: presentation – Server:
presentation, execution & database)

• Distributed application: Cooperative processing (Client: presentation &
execution – Server: execution & database)

• Distributed data storage: Data distributed between client and (Client:
presentation, execution & database – Server: database)

2.4.3 Processing of service requests

• Different life spans for client/server. Server manages requests in queue

• Single dedicates server process: not parallel, no interruption when higher
prioritized request, bottleneck

• Cloning of new server processes: expensive, synchronization, parallel pro-
cessing possible

• Parallel request processing through threads: shared address space

2.4.4 File service

• Centralized data storage: Client for display, quick interaction times, caching
for speed increases

• Stateless server: Client supplies al parameters to process request, cache
refresh done by client, often: write-through, server crash not influencing
client

• Stateful server: Server tracks clients and actions, cache owned by server,
clients less complex, after server crash: abort message to server

2.4.5 Time service

provides synchronized time for network nodes

2.4.6 Name service

• Name management for clients (sometimes called directory service)

• Datastructure: {name, adress, access information, attributes}

• Example: DNS – hierachial, distributed databases across logical network
of nameservers

17

2.4.7 Lightweight Directory Access Protocol (LDAP)

• Access and update of directory information

• Directory: List of objects in order, with meta-data – high volume of reads,
no transactions, different query languages

• Directory service: name service containing object names and meta-data

• Queries

– In directiories: Based on names & meta-data
– White Pages: Object access based on name
– Yello Pages: Object access based on meta-data

• LDAP models: information models (data structures), naming model (re-
ferencing objects), functional model (communication), security model (ac-
cess control)

• LDAP architecture: Client/serer based on TCP/IP, string for data repre-
sentation

– Client initiates session with server (IP, port, username, password) –
Binding

– Client invoces operation (read, write, seek)
– Client terminates – Unbinding

• Information model: Entry describes object with distinguished name (DN),
set of attributes (meta-data) with type and value(s)

– Attribute syntax: bin (binary), ces (case exact string), cis (case ignore
string), tel (telephone number), dn (distinguished name), generalized
time, postal address

– Schemas for entries based on attributes: E.g. Person: entry for one
person, attributes commonName (cn), surname (sn)

• Naming model: DN contains of relative distinguished names (RDN), hier-
archically structured as Directory Information Tree (DIT), DIT supports
aliases, distribution acress servers possible

• Functional model: Operatitons for access/modification. E.g. create, dele-
te, update (e.g. move in DIT), compare, search (Find postal address for
cn=John Smith,o=IBM,c=DE; Base object stparting point; scope: base-
Obeject, singleLevel, wholeSubtree; search filter possible)

• LDIF: LDAP Data Interchange Format: Import/Export directory infor-
mation

18

2.4.8 Failure tolerant services

• Modular redundancy: Multiple redundant services, copies grouped into
server/client groups

• Primary-standby-approach: One replica as master, At checkpoints, status
is propageted to replicas, On error, master is replaced by replica, hot vs.
cold standby

19

3 Remote Invocation (RPC/RMI)
3.1 Introduction
3.1.1 Local vs. remote procedure call

Local:

• Caller → request → procedure

• Caller ← answer ←

Distributed:

• RPC similar, Single thread responsible for data transfer

• Interface between remote systems

3.1.2 Definition

• Birrell & Nelson: Synchronous flow of control & data through pocedure
calls between seperate adress spaceses via small channels

• Synchronous: Client blocked

• Procedure calls: format defined by signater of called procedure

• Different address spaces: No globac memory space; Pointer handling nee-
ded

• Smal channel: reduced bandwith

3.1.3 RPC properties

• Client/Server cannot assume that procedure call performed via network

• Control flow: S registers service, C binds to S, Request, Responce

• Differences betwen RPC and local procedure call

– Caller & callee in different processes
– No shared address space, No common runtime environment, Different

lifetime
– Errorhandling must consider communication failures

• Basic RPC characteristics

– Uniform call semantics
– Type-checking
– Parameter functionality
– Optimize response times
– New error cases

• RPC and OSI

20

– Application layer: client-server model
– Presentation layer: RPC (hide communication details behind proce-

dure call, bride heterogenous platforms)
– Session layer: message exchange (OS interface)
– Transport layer: transport protocols (transfer of data packets)

• RPC vs. message exchange

– Synchronous – Asynchronous
– 1 primitive operation – 2 primitive operations (send, receive)
– Messages configured by RPC system – Messages configured by pro-

grammer
– One open RPC – Several parallel messages possible

• RPC exchange protocols: Request (R), Request-Reply (RR), Request-
Reply-Acknowledge (RRA)

3.2 Distributed applications based on RPC
3.2.1 Distributed application

• Stubs to make network interfaces transparent

– Encapsulate distribution specific aspects
– Represent interafces
– Client stub: Proxy definiton of remote procedure P – Specification

of remote service operation, assgning correct server, parameters in
transmission format, decoding results, ublocking client

– Server Stub: Proxy call for procedure P – Decoding paremeters, ad-
dress of service operation, invoking operation, prepare and send res-
ponse

• Implementing a distribution application

– Manual stub implementation error-prone → RPC generator (decla-
rative interface describtion)

– Applying RPC generator: See picture on page 70

3.2.2 RPC language

• Declarative language specifing interface between component of a distri-
butted application

• Interface attribute list: version of RPC system, fixed ports for invokati-
on: interface identifier, constant declarations, type declarations, operation
declarations

21

3.2.3 Phases of RPC based distributed applications

• 3 Phases: Design & implementation, Binding of components, Invocation

• Component Binding (Linking of components to enable RPC calls)

– Static: Binding, when client generated; Server address hard-coded
– Semistatic: Client determines server while initalization of client pro-

cess (static for lifecycle); Address via database, broad-/multicast mes-
sage, nameservice, mediation mechanism (broker/trader)

– Dynamic: Server address determined when RPC is performed; Ad-
vantages: server migration, binding to alternative servers, dynamic
server replacement.

• Mediation and brokering (registry, broker, trader)

– Functionality: Server registers interfaces with broker (export inter-
face), broker supplies client with interface information (import inter-
face)

– Broker information: Information about interfaces: names (white pa-
ges), types (yellow pages), behavioral/functional attributes (static:
functionality, cost, bandwith / dynamic: server state)

– Handling client requests: Direct – communication between C and S
vs. Indirect – Communication between C and S only via broker V

3.3 Remote Method Invocation (RMI)
Communication between different Java virtual machines

3.3.1 Definitions

• Remote object: Can be called by object within another JVM (on another
computer)

• Remote interface: Java interface specifying remote object

• Remote method invokation (RMI): objet-to-object communcation; Invo-
cing a method of remote interface; Same syntax as local call

3.3.2 RMI characteristics

• location & access transparency

• localization

• communication with remote objects

• automated class loading

• Clients interact with remote interfaces (not classes)

• RMI workflow: S registers with RMI registry (nameservice), C looks S
up in registry, C receives stub for S, C calls objects like a local object
(communication via stubs & skeletons)

22

3.3.3 RMI architecture

• Application layer: client method invokation vs. remote object

• Presentation layer: stub (proxy object) vs. skeleton

– Interception of client method calls; redirection to remote object

• Session layer: remote reference layer (client & server)

– Connection via 1-to-1 link
– Java Remote Method Protocol (JRMP) vic TCP/IP
– Mapping of stub/skeleton to transport protocol
– Method invoke

3.3.4 Locating remote objects

• Nameservice: RMI registry (mapping, stand-alone Java application, runs
on all remote machines, standard port 1099, itself remote object)

• Access via java.rmi.Naming

• Naming interface methods: bind, rebind, Remote lookup, unbind, list

• Registry-Lookup: C invokes lookup for url (rmi://host:port/service) –
socket connection, stub to remote registry returned, Registry.lookup() per-
formed on stub, Stub for remote object returned, C interacts with remote
object via stub

3.3.5 Developing RMI applications

• Define remote interface: public, extends java.rmi.Remote, each method
throws java.rmi.RemoteException, remote object parametrs/returns musst
be nterfaces

• Implement remote interface: Basics in java.rmi.server.RemoteServer, Sub-
classes: UnicastRemoteObject, Activatable

• Generate stubs and skeletons (using the tool rmic)

• Remote object registration: Register in registry on host of remote object,
stub needed

• Client implementation: Client registry lookup to get reference to remote
object, Interaction always with remote interface

3.3.6 Parameter Passing

• Primitive data types passed with values

• Local object parameter: Object passed (must implement java.io.Serializable
or java.io.Externalizable)

• Remote object parameter: Stub of remote object transfered as reference
to remote object

23

3.3.7 Distributed grabage collection

• Reference counter represents references which are alife

• Client access creates referenced message / No more reference → unrefe-
renced message

• Lifetime limit of references, Afterwards connection to server must be re-
newed

3.4 Servlets
Programs invoked by client, execoted on server host to extend functionality of
the server

3.4.1 Servlet Properties

• Execution by Servlet engine (e.g. Apache Tomcat)

• Methods specified within servlet object: init, shutdown, service (client re-
quest forwarded)

• Invoked via HTTP requests (e.g. http://myhost:8080/servflet/formServlet)

3.4.2 Servlet lifecycle

Loaded, Created, Initialized, Served Destroyed

3.4.3 HttpServletInterface

• HttpServlet extends GenericServlet

• Functions: doGet, doPost, doDelet, doPut

24

4 Basic mechanisms for distributed applications
4.1 External data representation

• Heterogenous environment = different data presentations ⇒ data trans-
formation needed

• Independence from hardware: External data representation

4.1.1 Marshalling & unmarshalling

• Marshal: Parameter serialization to data stream

• Unmarshal: Extraction from data stream and reassembly of arguments

• Either by RPC system or as software plugin

4.1.2 Centralized transformation

Only one node transforms data (send & received)

4.1.3 Decentralized transformation

All nodes transform data

• A transforms data send to B and vice versa

• A transforms data by B and vice versa

• A & B transform data into network-wide standard format; Recipient trans-
forms into local format (→ Adding of components only need to know net-
work standard)

4.1.4 Common external data representation

• Important aspects: Machine independent format, Description of complex
data structures

• E.g. ASN.1

• For numbers: Little endian (lower part of numbers in lower memory area);
Big endian (higher part of numbers in lower memory area) – Convention:
Network transfer structure well-defined, such as big endian

• For strings: 4 bytes length n, n bytes data, r bytes 0s with: (n+r) mod 4 =
0

• For arrays: 4 bytes length n, n elements (If variable number of elements:
counted array)

• For pointers: Problem, no shared address space

– Prohibit pointers in RPC

25

– Dereference pointers in RPC: Serialize datastructure (marshal) and
transfer whole data structure; booleans instead of null pointers; no
function pointers in heterogenous environments (homogenous java
possible)

– Transfer pointer

4.1.5 XML as common data representation

• Complex datatypes mapped to XML schema types for network transfer

• Primitive Datatypes: XML Schema Definition (XSD) equivalent

• SOAP build-in array encoding support

• SOAP API for custom mapping

• Abstraction:

– High: Application specific: XML
– Middle: General encoding: ASN.1
– Low: Network encoding: Sun XDR

4.1.6 Java Object Serialization

• Flattening object to store on disk or transmitting in messages

• Stored information: class information (name + version number); number,
types & names of variables; values of instance variables

• Java Serialization: ObjectOutptutStream.writeObject(obj)

• Java Deserialization ObjectInputStream.readObject

4.2 Time
• Need to measure time accurately: Time of events on computer → Syn-

chronized clocks for Concurrency control, Authentication (e.g. Kerberos)

• Notions of time:

– Time seen by observer
– Time seen by processes
– Logical notion (A before B)

4.2.1 Introduction

• Each computer has own clock: Processes get time, Timestamp of events,
Clocks drift from perfect time (clock drift rate = difference per unit of
time since reference clock)

• Timestamp: At time t OS reads hardare wlock Hi(t) and calculates time
on software clock Ci(t) = aHi(t) + b (e.g. nanoseconds since base time)

26

• Skew between clocks: Disagreement between two clocks, Ordinary quartz
clocks drift by ~1 sec in 11-12 days

• Coordinated Universal Time (UTC): International standard (atomic time,
adjusted to astronomical time), Broadcasted land-based accurate about
0.1-10 ms, GPS about 1 microsecond

4.2.2 Synchronizing physical clocks

• Physical clocks to compute current time to timestamp events (file modifi-
cation, transactions, ...)

• External Synchronization: With External authoritative clock S: |S(t) −
Ci(t) < D|

• Internal Synchronization: Pair of computers: |Ci(t) − Cj(t) < D| (might
drift cellectively)

• Processes synchronized externally with bound D ⇒ Synchronized inter-
nally with bound 2D

• Clock correctness:H correct if drift rate within bound q > 0 (e.g. 10−6 secs
sec)

– Error of interval between t and t′ bounded; No jumps
– Weaker monotonicity: t′ > t → C(t′) > C(t) e.g. required by Unix

make
– Faulty clock is not correct: crash failure (clock stops ticking), arbi-

trary failure (anything else e.g. jumps)

• Synchronization in a synchronous system

– Bounds in synchronous system: Time needed for process step has
lower & upper bound, message transmission bounded, process clocks
bounded drift rate

– Process p1 sends time t to p2

– p2 sets clock to t+ (Ttransmax−Ttransmin
)

2 ; Skew ≤ (Ttransmax−Ttransmin
)

2

• Christian’s method for asynchronous system

– Observation: round trips reasonable short but unbounded; estimate
possible, if round trip sufficiently short compared to accuracy needed

– p requests time from S and sets clock to t+Tround

2 ; Accuracy:±Tround

2 −
min

– Discussion: Only suitable in LAN/Intranet: Time server might fail,
Faulty time servers, False clock reading

• Berkeley algorithm

– Internal synchronization of group of computers (only intranet suita-
ble)

– Master (can be reelected on failure) polls to collect clock value; Round
trip time used to compute slaves’ clock values

27

– Calculation of average (eliminating spikes)
– Sends adjustments to slaves

• Network Time Protocol (NTP)

– Time distribution over internet via hierarchical tree (Primary con-
nected to UTC, secondary connected to primary)

– Subnet can reconfigure on failures: Primary lost source becomes se-
condary, Secondary losing primary use another primary

– Synchronization modes: Multicast (low accuracy), Procedure call (See
Berkeley algorithm – middle accuracy), Symmetric (Pairs of servers
symmetric – high accuracy)

– Message exchange: UDP messages, timestamps of recent events (sen-
d/receive of previous message, send of current message), Non-negligible
delay between messages possible; See picture page 102

– NTP estimates offset o and round-trip delay d – Ti = Ti − 1+ t′ − o,
di = t+ t′, o = oi +

t′−t
2

– Offset estimation: oi offset estimation, di measure of accuracy, NTP
server pairs < oi, di >, peer-selection for reliability estimate

– Accuracy: Internet tens of ms, LAN ~1ms

• Precision Time Protocol (PTP)

– Designed for LANs; accuracy < microseconds
– Synchronization Message Exchange

* Master-Slave hierarchy; Master sync message using UDP multi-
cast + follow-up message with time, sync message left master

* Slave initiates exchange to determine round-trip-delay
* Calculation of offset See picture + formulas on page 103
* Support to select best candidate clock

4.3 Distributed execution model
4.3.1 Events

• Messages causing events: Internal events, Message sending, Message recei-
ving (s.t. + message delivery)

• send(m) →msg receive(m): Causal relation. Sending before Receiving

• || Concurrent events

• Happened Before (Lamport):

– Ordered within one component
– Send before receive
– Transitivity
– If ¬(a→ b) ∧ ¬(b→ a)⇒ a||b
– C : E → T (mapping events to timestamps): a → b ⇒ C(a) < C(b)

(If ⇔, then strictly consistent)

28

4.3.2 Ordering by logical clocks

• Component manages: Logical clock (lc), View on global clock (gc)

• Update Rule 1: Update lc, when events occur

• Update Rule 2: Update gc: Attach lc to sending messages; Update view
on gc when receiving messages

4.3.3 Logical clocks with scalar values

• Clock value is positive integer. lc and view on gc represented by counter
C.

• R1: Prior to event execution: C := C + d

• R2: Receiving messages with timestamp Cmsg: C := max(C,Cmsg), exe-
cute R1, deliver message

• Partial ordering; Not strictly consistent

4.3.4 Logical clocks with vectors

• n−dimensinoal (number of components) vector with positive integers.
Component TKi manages vector vti[1...n].

• vti[i] logical clock of TKi

• vti[k] view of TKi on logical clock of TKk

• R1: vti[i] := vti[i] + d

• R2: 1 ≤ k ≤ n : vti[k] := max(vti[k], vt[k]), Execute R1, deliver message

• Timestamp comparison

– vh ≤ vk ⇔ ∀x : vh[x] ≤ vk[x]

– vh < vk ⇔ vh ≤ vk ∧ ∃x : vh[x] < vk[x]

– vh||vk ⇔ ¬(vh < vk) ∧ ¬(vk < vh)

• a and b are events with timestamps

– a→ b⇔ va < vb

– a||b⇔ va||vb

• a of TKi and b of TKj triggered:

– a→ b⇔ va[i] < vb[i] ∧ va[j] < vb[j]

– a||b⇔ va[i] < vb[i] ∧ va[j] < vb[j]

4.4 Failure Handling in distributed applications
• Local applications: Exception Handling

• Distributed: Communication failuse, system crashes, byzantine failure (er-
ratc behavior), ...

29

4.4.1 Testing distributed applications

• Testing without communication ⇒ Component functaonality

• Testing with local communication ⇒ Prediction abount components (no
transport times)

• Testing with network communication ⇒ Identification of time dependen-
cies, execution ordering, multiple clients

4.4.2 Debugging of distributed applications

• Server breakpoints can cause client timeouts

• Communication between components (Message flow)

• Snapshots (No shared memory, No strict clock synchronisation; State of
system)

• Breakpoints

• Nondeterminism (Message transmission)

• Interference between debugger and application (delay)

4.4.3 Approaches of distributed debugging

• Focus and send/receive

• Monitoring communication between components. Components as black-
boxes (tested before locally)

• Global breakpoints: Events are partially ordered; Causally distributed bre-
akpoint: Remote components rolled back to earliest state after last event
in a before-relationship with triggering event

4.5 Distributed transactions
• Important to design reliable, fault tolerant distributed applications

• Several requests bundled in transaction

• Distributed transation if more than one server involved

• ACID properties: Atomicity (All or nothing), Consistency (before/after-
wards consistent state), Isolation (No effect before commit), Durability
(Results persistent)

4.5.1 Isolation

• Serializability: Same sequence on each server

• Timestamps: Timestamp (local timestamp + server id) issued to transac-
tion on start. if(ttrans < tobj) then abort else access obj.

30

• Locking: Server has locks for local objects. TA locks before access, exclu-
sive locks (or r/r), all locks removed before termination; 2-Phase-Locking:
No locks requested after first release

• Optimistic: Check for conflicts if commit ready

4.5.2 Atomicity and persistence

• Intention list: All modifications in intention list (log file). Each server S
performs ALS(trans) to update local objects. Then delete AL

• New version: On access new version of object objtrans is created. Overwrite
old element on commit.

4.5.3 Two-phase commit Protocol (2PC)

• Voting protocol to determine commit: Voting Phase, Completion phase

• Coordinator (Client / First server) contacts all servers Si (canCommit?)

• If one server votes no: Abort to all servers which voted yes (doAbort)

• All servers vote yes: Commit message to all servers (doCommit)

• Acknowledgement (haveCommited)

• getDecision: Yes/No call from participant to coordinator

• Problems: Failures on crashes (server, coordinator)

4.5.4 Extended 2PC

• Coordinator has Write-Ahead-Loging, Send Outcome, for pending tranca-
tions in outcomes table

• Server sends acknowledgement when asked for finished commits, asks for
outcome of uncommited transactions

• 3PC also possible

4.5.5 Distributed Deadlock

• Deadlock detection schemes try to find cyles in wait-for graph. Problems:
Single point of failure, Communication time

• Edge Chasing: No global wait-for graph, server has knowledge about edges,
find cycles by forwarding messages; TA starts at coordinator C (records if
TA active / waiting), Lock Manager informs C, when TA starts waiting /
aquires lock

– Initiation: Server X notes, that W is waiting for transaction U . W →
U send via C

– Detection Server Y receives W → U . It notes, U → V . It forwards
W → U → V .

31

– Resolution: If Cycle detected one TA in cycle is aborted

• Transaction Priorities: Every TA can initate deadlock detection; If parallel,
several TAs might be aborted. TAs totally ordered by Priorities. Abort
TA with lowes priority

4.6 Group communication
• Traditional 1:1 communication

• Distributed environments: 1:n for fault-tolerance, object locaization, con-
ferencing/groupware, syncronization

• Functional components composed to group

• Group membership: Structural characteristics, composition, management

• Support of group communication: addressing, delivery

• Communication: unicast, broadcast, multicast (fault tolerance, location
objects, multiple update of distributed data)

• Synchronization: consistent sequence of actions

• Group addressing: Central server which knows group composition / De-
centralized (members know composition)

• Communcation services: Datagrams (UDP) / Reliable streams (TCP)

• Consistent behavior: ISIS / Horus

4.6.1 Groups of components

• Closed (no external messages) vs. open group (external messages broad-
casted to group members)

• Flat (peer) vs. hierachical group

• Implicit (anonymous, group address implicity expanded) vs. explicit group

4.6.2 Group Management

• Operations: Query names, groupCreate, groupDelete, groupJoun, grou-
pLeave, reading/modifying attributes, read member information

• Management architecture: Centralized (group server), Decentralized (all
components perform management tasks – syncronization), Hybrid (group
manager within lan clusters)

4.6.3 Message dissemination

• Unicast to group members

• Group multicast to whole group

• Inter-group multicast to several groups

• Broadcast to all components (filtering required)

32

4.6.4 Message delivery

• Who gets message? / When is message delivered?

• Atomicity (who?): Exaclty-Once to all recipients; All-or-Nothing to all
group members or none

• Sequence of message delivery: Same sequence for all group members (other-
wise Nondeterminism possible)

– Ordering: synchronous (system-wide global time ordering), loosely
synchronous (consistent time, but no global absolute time)

– Sequencer (total ordering): Sequencer serializes all messages send to
group and determines sequence number, e.g. Apache Zookeeper

– Virtually synchronous ordering: based on before relation
– Sync-ordering: Synchronization points. Synchronously ordered mes-

sages delivered to group members in-sync. Ordering method to syn-
chronize local states

4.6.5 Taxonomy of multicast

See picture page 128

• Unreliable Multicast: No acknowledgement, At-Most-Once semantics, No
ordering

• Reliable Multicast: “best-effort” (at-least-once), B-multicast primitive pro-
cess delivers, if multicaster not crashing, B-deliver primitive similar when
receiveed

• Atomic Multicast: Reliable with atomic gurantee (all-or-nothing)

• Serialized Multicast: Consistent sequence totally vs causually ordered (e.g.
virtually synchronous)

• Atomic, Serialized Multicast: Atomic + Serialized

4.6.6 Group communication in ISIS

• Toolkit for group management, ordered multicast abcast (totally ordered)
& cbcast (causually ordered)

• abcast (atomic broadcast)

– Phase 1: Sender S sends message N with logical timestamp TS(N),
Receivers determine new timestamp Tr(N) and return to S

– Phase 2: S creates new timestamp TS,new(N) = max(Tr(N))+ j
|R| (j

unique identifier of S), S send commit to all r. r deliveres message
according to new timestamp

• cbcast (causual broadcast)

– Vector timestamps

33

– Vector specifies number of messages received in sequencece from par-
ticular group members

– Sending appends incremented state vector
– Two conditions for delivery: No message from sender missing, No

other depending message not yet received

4.6.7 JGroups

• Group communication toolkit for Java

• Reliable, atomic ordering

• Group membersihp managment

• Groups identified in channels: channel.connect(“MyGreup”);

• Channel connected to protocol stack (e.g. Sequencer, GMS, Frag, UDP)

4.7 Distributed Concensus
• Distributed processes agree on value (even in case of failure desireable)

4.7.1 Consensus problem

• pi is undecided, value vi proposed

• Processes communicate

• pi sets decision variable di and is decided then

• Properties: termination (algorithm ends), agreement (same value of di),
integrity

• Algorithm (in failure-free environment): Reliable multicast of all processes.
di = majority(p1, p2, ...).

• Properties: Termination/Integrity depending on multicast

4.7.2 Byzantine Generals Problem

• Generals issue commands to lieutnants

• Lieutnants have to agree to attack or to retreat

• Difference to Consensus problem: General supplies value, lieutnants have
to agree on

• Properties: Termination, agreement, Integrity (if general correct, all decide
as he suggests)

4.7.3 Interactive Consistency Problem

• Process suggests single value

• creation of decision vector

• Properties: Termination, Agreement

34

4.7.4 Consensus in synchronous networks

• Assumtion f < n processes crash

• Algorithm proceeds in f + 1 round to reach concensus

4.8 Authentacation service Kerberos
• Based on Needham Schröder Protocol

• Client C, Server S, Key distribution center KDC, Ticket granting service
TGS

• C requests service from S.KDC and TGS gurantee secrecy & authenticity
requirements

• TGS ticket issued by KDC to C; Authentifier of C to gurantee valid
communication with S, Session key between C and S

• Problem: Synchronization of clocks

4.8.1 Authentication process

• C → KDC: Request TGS ticket

• KDC → C: TGS ticket

• C → TGS: Request server ticket

• TGS → C: Server ticket

• C → S: Authentifier

• S → C: Authentifier

35

5 Web Services
Standard means of communication among distributed applications

5.1 Service Oriented Architecture (SOA)
• Loose coupling and dynamic binding between services (find/publish in

service registry)

• Service well defined, self-contained

• Focus on interface design

• SOA vs. Component Based

– loose integration vs. tight integration
– process-oriented programming vs. code-oriented
– interoperable architecture vs. technical complexity
– build to change vs. buidl to last

5.1.1 Layered Approach

• Mapping of business processes to services

• Application layer, Process layer, Service layer, Component layer, Object
Layer

5.1.2 Adpoting SOA

+ Interopable, Easy data exchange, Easy access, Availability of external ser-
vices, ...

– Different formats, Security issues

• Enterprise Services Bus (ESB): Software architecture / software class for
SOA: Interopability via XML, Web Services interfaces, ... e.g. Mule

5.2 Web Services – Characteristics
• Web Services

– Live somewhere in the network
– Are described using a service description Language (XML)
– Are published to service registry
– Are available through declared API
– Provide entry point accessing local/remote services

• Allow integration of functionality (within/between organizations)

• Features: Programmable, Self descriptive, Encapsulated, Loosely copu-
led, Location transparent, Protoco transparent, Composition, Document-
Centric

36

• Webservices vs. Distributed Objects: Description language (operation, re-
turns, ...), Client stub / Server skeleton, network interations

– Web Services: Stateless, Internet
– Distributed Objects: Stateful, Intranet

5.3 Web Services Architecture
• W3C: Web service is software system identified by URI, interfaces/bin-

dings described using XML, discoverable & interaction possible using
XML messages

• XML: tag data, SOAP: transfer, WSDL: describe services, UDDI: list ser-
vices

• Simpilied: RPC over internet using XML

5.3.1 Interoperability Stack

• Compositional (WS-notification)

• Quality of Experience (WS-Security/Transactions)

• Description (WSDL, UDDI)

• Messaging (XML, SOAP)

• Transport (HTTP, SMTP)

5.3.2 Basic architecture

• Interaction between components as message exchange

• Functions: message exchange, description, publishing/finding

• Web services is interface, service provided by implementation

• Service description: Details of interface / implementation

5.3.3 Roles

• Service Provider

• Service Discovery Agency

• Service Requestor

5.3.4 Operation

• Publish

• Find

• Interact

37

5.3.5 Basic Standard Technologies

• WSDL: Simple Object Access Protocol

• UDDI: Web Services Description Language

• SOAP: Universal Description, Discovery and Integration

• Providing & Consuming Service

– Provider describes service in WSDL and publishes to agency
– Requestor queries agency to locate service/communication methods
– Agency sends service description
– Requestor sends request based on WSDL
– Provider sends request based on WSDL

5.3.6 Message Exchange Patterns

• eg. one-way, request/response, broadcast

• Peer-to-Peer: Each web service acts as requestor and provider

• Direct interaction: Requestor & discovery agency fulfilled by the client

• Intermediary (web server between requestor & provider): Additional func-
tions such as routing, security management

5.4 Simple Object Access Protocol (SOAP)
• simple, lightweight XML messaging

• no specific protocol

• RPC or document transfer

5.4.1 Parts

• Envelope

• Encoding Rules

• Convention for RPCs and responses

• SOAP message: Envelope (XML namespaces), SOAP header (optional),
SOAP body (payload e.g. method name & arguments)

5.4.2 Exchange Model

• One-way transmission. Interaction is combination of SOAP messages.

• Processing messages: Interpret message for application and “SOAP ac-
tor”; Verify mandatory parts; (Remove parts from step one and forward
message)

38

5.4.3 SOAP in HTTP

• HTTP request & response used for SOAP request & response

• Media type “text/xml”

• Interpretation of request by webserver/servlet/...

5.4.4 SOAP RPC Conventions

• RPC interactions mapped to SOAP (Converted through middleware)

• e.g. (Simpilied): <nameSpace:functionName ...><arg ...>value</arg></nameSpace:functionName>

5.4.5 SOAP-Router

• Deliver through series of nodes; Move messages between networks

• May provide: logging, auditing, security enforcement

• WS_Routing protocol

5.5 Web Services Description Language (WSDL)
• Defines service as colletion of network endpoints / ports (compare IDL)

• Describes: Functionality of a service (arguments), Accessability of a service
(protocols), Location of a service (URI)

5.5.1 WSDL Information model

• Types: Container for non build-in types

• Message: Definition of transferred data

• Port Type: Set of operations per endpoint

• Operation: Supported actions (input/output message)

• Binding: Protocol, data format, port type

• Port: Binding + network address

• Service: collection of related endpoints

5.5.2 Parts

• Abstract (What is offered?): Types, message, operation, port types

• Concrete (Where/How is it offered?): Bindings, services, ports

• See picture page 159

• Relationship: XML definitions; Operations supported by WebService; Bin-
dings connect port types to port

39

5.5.3 Generate code from WSDL

• WSDL compiler can create e.g. Java interface

• WSDL documents from API / Stubs & Skeletons from WSDL document

5.5.4 Bad Practices

• Bad names and comments

• Port Types tied to protocols

• Unrelated operations placed in single port type

• Overload output messages

5.6 Universal Description, Discovery and Integration (UD-
DI)

• Services for description/discovery of businesses, services, interfaces

• UDDI is web services itself (can be described by UDDI)

5.6.1 UDDI Business Registry System

• Wite Pages: Basic information (Name, ... of company & its services)

• Yellow Pages: Detailed business data & web services

• Green Pages: Information how web service can be invoked

5.6.2 UDDI Entities

• UDDI can store & manipulate four main types of entities

• businessEntity: Owner of web service (name, key, services, ...)

• businessService: Group of Web Service(s) (name, key, binding, ...)

• bindingTemplate: Single WebService (key, access point)

• TModel WSDL interface types (name, key, URI to data)

5.6.3 UDDI Registry API

• 3 main user types: Providers, requesters, other registries

• Inquiry API: find_service, get_serviceDetail

• Publishers API: save_service, delete_service

• Security API: get/discard authentication tokens

• Ownership Transfer API

• Subscription API: Monitoring changes in registry

• Replication API: Replication between registries

40

5.7 Representational State Transfer (REST)
• Principles of using standards as HTTP, URIs and Mime Types

• Resource has ID, URIs to identify item of interest

• Link resources together

• Standard methods get/post/put/delete

• Stateless communication

• Resources with multiple representation: client chooses

5.8 Web Service Composition
• Choice of granularity

• Composition of complex services from smaller ones

5.8.1 Dimensions to handle complexity

• Component model: Sub-services

• Orchestration model: Order of sub-services (e.g. WS-Coordination)

• Data access model: Data Exchange

• Transactional models: Transactional semantics (WS-Transactions)

• Exception Handling: Handle errors

5.8.2 Web Service Orchestration

• Transparent Chaining: Client determines usage

• Translucent Chaining: Worklow services invokes services in order (Status
propagation to client)

• Opaque chaining: Aggregate service invokes services (no client awareness)

5.9 Adopting Web Services
5.9.1 Example Web Services

• Amazon E-Commerce Service (ECS): Amazon product database, SOAP/-
REST, search/similarity lookup, remote shopping

• XMethods: Clearinghous for web serives

41

5.9.2 Apache Axis

• Environment to implement web services

• APIs for invoking SOAP & manipulating SOAP objects

• WSDL compiler and data bindings for Java classes

• Hosting mechanisms & transport framework

• Axis2: Java based implementation + REST

5.9.3 Web Services & Java

• Several Java APIS for web services

• SAAJ, JAX-WS, JJWSDL, JAXR, JAXP, XWSS

5.9.4 Distributed Process Architecture

• Client ↔ adapter/application server ↔ application

5.9.5 Semantic Web Services

• Semantic meta-data to automate discovery / interaction with web services

• Map-Service: Input (int, int), Output gif – (x, y) is what? Kind of map?

• Candidate: OWL-S (Ontology Web Language for Web Services)

5.10 Mashups
Create new applications by combining existing ones

5.10.1 Mashup Techniques

• Mashing on the Web Server: Browser just waits for response, Browser
decoupled from supply pages, Web server as proxy serves entire page,
Scalability problems

• Mashing using Ajax: Work divided between server and browser, Complex,
Browser navigation bypassed, Browser doing most work, All data routed
through server

• Mashing with JSON: Browser communicates with source, handling of pre-
made JSON objects, no data consolidation on server

5.10.2 Development Support

• Component model: Characteristics of mashup components give interface.
Properties: type (data, logic, ui), interface (CRUD, API, IDL/WSDL),
extensibility (user may extend component model?)

• Composition model: How components ordered – flow-based vs. event-based

• Example-tool: Yahoo Pipes

42

6 Design of distributed applications
• Specification of software structure: small, distributed components (local

vs. remote), testing

• Name resolution: remote services

• Communication: client-server vs. peer-to-peer, network errors

• Consistency: replicated data, cache, interface Consistency

• User requirements: functionality, non-functional requirements, security,
client errors, heterogenity

6.1 Steps in design
• Identify repositories

• Data assigment to modules

• Define module interface

• Define network interface

• Classify module as client/server

• Registration of servers (which are available)

• Strategy for binding process

6.2 Development environment
6.2.1 Open Distributed Processing (ODP)

• Standards for distributed systems (e.g. ISO/OSI reference model)

• Complexity reduction using abstraction levels (viewpoints)

– Enterprise: overall goals
– Information: structure, controll/access of information
– Computation: logical distribution
– Engineering: physical distribution
– Technology: different systems (network, hardware)

6.2.2 Model Driven Architecture (MDA)

• Object Management Group (OMG) Standard

• Model: Description of system (part) in well-defined (syntax, semantics)
language (automatic interpretation possible)

• MDA concept:

– Development of platform independent models (PIMs) – business func-
tion, components, classes, conditions, semantics – UML diagrams
(use cases, class, sequence, ...)

43

– Mapping to platform dependent models (PSMs) – Realization of soft-
ware in UML

– Implementation, Integration & Testing – Code generation (Use of
tools possible)

– AutoFocus: Tool to specify distributed systems – hierachical descrip-
tion, platform independent development, requirement Analyses, De-
sing modelling, interactive simulation, code generation

6.3 Service-Oriented Modeling
• Transfer service approach to design/modeling of software systems

• Service-oriented modeling (SOM): model SOA systems

• Service-oriented modeling framework (SOMF): development life cycle me-
thodolgy, universal language

6.3.1 Service Evolution

• Conceptual service: idea / concept

• Analysis service: unit of analysis

• Design service: design entity

• Solution service: physical solution (to be deployed)

6.3.2 Life Cycle Structure

• Elements for service development / operations

• Timeline: life span of service

• Events: predicted / unexpected events during life span (begining + dura-
tion)

• Seasons: design-time / run-time

• Disciplines: Identify best practices – season disciplines (service orinted
conceptualization) vs. continuous disciplines (service portfolio manage-
ment)

6.3.3 Life Cycle Modeling

See Picture page 182

• Conceptual: Identify concepts

• Discovery & analysis: Granularity, reusability, coupling, ...

• Business integration: Integration in business (organization, IT, ...)

• Logical design: Service relationships, message exchange, ...

• Conceptual architecture: SOA design, environment, technological stack

• Logical architecture: Integrate SOA assets, depentencies, service reuse, ...

44

6.3.4 SOM Framework

See image on page 183

45

7 Distributed file service
7.1 Introduction

• Replication & concurrency control

• Distributed file system: logical colletion of files on different computers into
common file system & storage computers connected through network

• Distributed file service: set of services supported bi distributed file systems

• File server: executon of file service software on computer

• Allocation: placement of files on different computers

• Relocation: changes of file allocation

• Replication: multiple copies of file on several computers (Relication degree
REPd of file d is total numbers of copies)

• Motivation: Network traffic / response times / availability / fault tolerance
/ parallel processing ⇒ Transparency

7.1.1 Consistency types

• Internal Consistency: Single file copy consistent (2-phase commit)

• Mutual Consistency: All copies identical (multiple copy update protocol)
– Strict (All copies same state), Loose (All copies converge to same con-
sistent state)

7.1.2 Replica placement

• Permanent replicas: decided in advance (e.g. mirroring)

• Server-initiated replicas: enhance server performance (reduce server load,
migrate to server near clients)

• Client-initiated replicas: caches (improve access time, placed on client,
limited time)

7.2 Layers of a distributed file service
• Naming / Directory service: placement / relocation of files, server loca-

lization

• Replication service: response times / availability / consistency / multiple
copy update

• Transaction service: group operations to transaction / concurrency control
/ error reboot

• file service: read / write operations

• block service: access / allocate disk blocks

46

7.3 Update of replicated files
7.3.1 Optimistic concurrency control

• No user constraints, access to inconsistent data

• Available copy: read local / best-available file copy, write all file copies

• Example: Coda file system (Carnegie-Mellon University)

7.3.2 Pessimistic concurrency control

• Allways access consistent data (data-critical applications)

• Multiple copy update

– nonvoting
* primary site: primary site serializes/synchronizes operations
* token passing: access possible if client has token

– voting: negotiation result determines access (global consent)
* majority voting
* weighted voting

7.3.3 Voting schemes

• REPd replicas of file d

• sg(r) weight of computer r ∈ K

• Sum of weights SUM =
∑

r∈K sg(r)

• Votum: sum of votes voted for access

• Quorum (R,W): lower bound where acces is granted

• Multiple-reader-single-writer: R+W > SUM , W +W > SUM

• Write-All-Read-Any: W = n, R = 1

• Majority consenus: W = R = REP
2 + 1 if REP even; W = R = REP+1

2 if
REP odd

• Weighted voting: W = R = SUM
2 + 1 if SUM even; W = R = SUM+1

2 if
SUM odd

7.4 Coda file system
• scalable, secure, available distributed file system

• mobile use, organization in (replicated) volumes

47

7.4.1 Architecture

• Picture page 192

• Venus processes provide access to remote files (comparable to NFS client)

• Allows to continue if access is impossible

7.4.2 Naming

• Each file exactly in one volume, physical vs. logical (all volume replicas)

• Replicated Volume Identifier (RVID) for logical volumes

• Volume Identifier (VID) for phyical volumes

• File identifier (96-bit)

• See picture page 193

7.4.3 Replication strategy

• Client caching: cache complete file when opened, server records callback
promise for client, update on client ⇒ server notification ⇒ Invalidation
to other clients

• Server replication: Volume Storage Group (VSG): servers that have copy
of volume, Accessible VSG (AVSG): servers available for client, read-one,
write-all update protocol

• Coda version vector (CVV): optimistic strategy, CVV vector timestamp
initalized to [1, ..., 1], On file close Venus breadcasts update messages to
servers in AVSG, if for two CVVs neither v1 ≤ v2 nor v2 ≤ v1 ⇒ conflict

7.4.4 Disconnected operation

• Client resorts to local copy, priority list for cache (hoarding possible)

• AVSG = {}

• Reintegration: Send update operations to AVSG servers for updated files

48

8 Distributed Shared Memory (DSM)
• Abstraction for processes who do not share physical memory

• DSM appears as memory in processes’ address space

8.1 Programming model
• Direct access to variables (no marshalling)

• DSM possible if non overlapping lifetimes

• Implementation: Hardware (Shared memory multiprocessor architecture
e.g. NUMA) vs. Software (e.g. Linda Tuple Spaces / JavaSpaces)

8.2 Consistency model
• Local caching possible ⇒ Consistency?

• Write-Update: Local updates multicasted

• Write-Invalidate: Send invalidate, acknowledgement (block all other ac-
cess), update, send updated copy

8.3 Tuple space
• Originally for Linda language

• Set of tuples interpreted as list of typed fields

• Based on shared memory, tuple stores information

8.3.1 Atomic operations

• out(t) creates new tuple

• in(t) reads tuple and deletes

• read(t) reads tuple

• eval(p) generates new process

• Synchronous in/read, Asynchronous inp/readp

8.3.2 Tuple space implementation

• Central tuple space

• Replicated tuple space (each computer has complete replica)

• Distributed tuple space / subspaces (out operations performed locally)

8.3.3 Exapmle program

Client out, Server in, Server out, Client in

49

8.4 Object Space
• Shared, network-accessible object repository

8.4.1 Features of JavaSpaces

• Objects passive: objects not manipulated / run in space

• Shared spaces: network-accessible memory, many remote processes inter-
act concurrently

• Persistent spaces: stored until removed / lease time run out

• Associative spaces: objects accessed via associative lookup

• Transaction oriented spaces: atomic opreations

• Spaces support exchange of executable code

8.4.2 Data structures

• Entry interface (Serializable) for objects in space (ne.jini.core.entry), ex-
tended by classes storing variable values. Public constructor setting varia-
bles

• SpaceAccessor: JavaSpace s = SpaceAccessor.getSpace(); spaces Jini ser-
vice / RMI lookup

8.4.3 Basic operations

• read, take (read, remove), write, notify (notify process matching entry has
arived, can be requested)

• write: Lease write (Entry e, Transaction txn, long lease) throws Remote-
Execption, TransactionException

• read and take: read remote object and copy to local process + remove from
space, process needs template. SharedVar template = new SharedVar();
SharedVar result = (SharedVar) space.take(template, null, Long.MAX_VALUE);
If several matching objects, any can be selected, waiting till entry available

• Matching rules: template class matches or is super class, if template field
is null, matches any value, if field is specified, objects field must match

• Atomicity: Basic operations are atomic ⇒ No race-conditions (if take is
used for editing objects)

50

9 Object-based Distributed Systems
9.1 Object Management Architecture (OMA)

• Also: Common Object Request Broker Architecture (CORBA)

• possible middleware for object-oriented distributed applications

• ORB communication through request/reply protocol. Only mediates bet-
ween application objects (localization, messages delivery, ...)

9.2 Object Request Brokers (ORB)
• Connects distributed objects at runtime

• Support invocation of distributed objects

9.2.1 Features

• Static (interface determined on compiling) & dynamic (interface determi-
ned at runtime) invocations

• Interfaces for higher programming language

• self-descriptive

• location transparcency

• security checks

• polymorphic method invocation (execution depends on objects instance)
– ORB calls objects method (vs. RPC calls server function)

• hierachical object naming

9.2.2 ORB structure

• Picture page 209

• components

– ORB core (kernel): mediates request between client/server, network
communication

– Static invocation interface: determine operations/parameters on com-
pilation

– Dynamic invocation interface: identical for all ORB implementation
(only one dynamic interface)

– ORB interface: ORB service calls (conversion object reference to
strings)

– Interface repository (signature of methods for dynamic invocation)
– Object adapter: brige between CORBA/IDL interfaces and programming

language interfaces

51

– Runtime repository: information about server (supported) object (clas-
ses)

– Skeletons: language of server created by IDL compiler (several static,
one dynamic skeleton)

• Embedding in distributed applications

– ORB as library
– e.g. ORBIX & TAO

9.3 Common object services
• System level services extend ORB functionality

• Life-cycle Service: create, copy, migrate, delete objects

• Persistence: object storage e.g. databases

• Name: locate objects by name e.g. LDAP

• Event: register events

• Concurrency Control: lock manager

• Transaction: 2-phase commit coordination

• Relationship: create relations between objects, navigation, referntial inte-
grity

• Query: SQL operations

9.4 Inter-ORB protocol
communication between ORBs based on General Inter-ORB protocol (GIOP)

9.4.1 GIOP Features

• Message formats (request, reply) + common data representation (CDR)

• Remote object references

• Internet Inter-ORB Protocol (IIOP) is GIOP via TCP/IP

9.4.2 External data representation

• Primitive data types: char, octet, short, ...

• Complex data types (typeCodes: struct, union, sequence (Format descri-
bed in interface repository)

9.4.3 Object reference

• Identifies object accessed via IOP

• Object reference (IOR profile): IP host address, TCP port, object key

52

9.4.4 GIOP message

• components: head, header, content

• head: same format for all message types, identifies message type

• message types: Request, Reply, CancelRequest, LocateRequest (destina-
tion of object reference), LocateReply, CloseConnection, MessageError,
Fragment

9.4.5 RMI over IIOP

• Java Remote Method Protocol (JRMP) for RMI (Java specific) ⇒ i.e. no
interoperability with CORBA (any language)

• RMI-IIOP uses JNDI to register objects by names

• Java IDL for CORBA (no JRMP, no RMI)

9.5 Distributed Component Object Model (DCOM)
• COM: Process library, Support development of dynamic components (dll,

.exe)

• DCOM: COM + process communication with remote processes, access
transparency

9.5.1 Object Model

• DCOM object: implementation of interface with unique, 128-bit Interface
Identifier (IID)

• Only binary interfaces (table with pointers to implementation)

• Class instances, transient

9.5.2 Architecture

• Library specifies method signature

• Registry records maping remote call + local file

• Service control manager (SCM) activates objects

• Proxy marshaller transforms code to network stream

• Client proxy unmarshals objects

53

9.5.3 Object Invocation Model

• Remote-invocation model (synchronous/blocking)⇒ Canel object to can-
cel

• Client reference to remote object via interface pointer (proxy implemen-
tation), How forward reference? Image S 219

• Cobmination with Microsotf Transaction Server (MTS) & Microsoft Mes-
sage Queue Server (MSMQ) to COM+ (Transaction, integration into Win-
dows)

9.6 .NET-Framework
• Windows framework for distributed applications

• Mainly: Common Language Runtime (CLR) + Framework Class Libary

9.6.1 CLR

• Runtime environment for different languages: memory + thread manage-
ment

• Encapsulate access to OS functions

• Common intermediate language (MSIL)

• Common Type System (CTS): Possible datatypes / programming con-
structs uniformly interpreded for interoperability

9.6.2 Frame Class Library

• Common functions for all languages in .NET framework (file access, da-
tabase interaction)

• Hieracrchy of namespaces (System.Object)

9.6.3 .NET-Remoting

• Remote method invocation (System.Runtime.Remoting)

• Different tarnsport protocols (TCP, HTTP)

• Activation of remote objects

54

	Introduction
	Background
	Internet Computing
	Enterprise Computing

	Key Characteristics of Distributed Systems
	Motivation
	Definitions 'Distributed System'
	Methods of Distribution
	Properties of Distributed Systems
	Challenges of Distributed Systems
	Examples for Development Frameworks

	Distributed Applications
	Definition
	Interfaces
	Distributed vs. parallel programs

	Influential Distributed Systems
	Mach
	NFS
	J2EE
	Google

	Architecture of distributed systems
	System models
	Architectural model
	Interaction model
	Failure model
	Security model

	Transparency
	Goals for distributed applications

	Paradigms for distributed applications
	Information Sharing
	Message exchange
	Naming entities
	Bidirectional communication
	Producer-consumer interaction
	Client-server model
	Peer-to-peer model
	Group model
	Publish-Subscribe model
	Taxonomy of communication
	Levels of Abstraction

	Client-server model
	Terms and Definitions
	Concepts for client-server applications
	Processing of service requests
	File service
	Time service
	Name service
	Lightweight Directory Access Protocol (LDAP)
	Failure tolerant services

	Remote Invocation (RPC/RMI)
	Introduction
	Local vs. remote procedure call
	Definition
	RPC properties

	Distributed applications based on RPC
	Distributed application
	RPC language
	Phases of RPC based distributed applications

	Remote Method Invocation (RMI)
	Definitions
	RMI characteristics
	RMI architecture
	Locating remote objects
	Developing RMI applications
	Parameter Passing
	Distributed grabage collection

	Servlets
	Servlet Properties
	Servlet lifecycle
	HttpServletInterface

	Basic mechanisms for distributed applications
	External data representation
	Marshalling & unmarshalling
	Centralized transformation
	Decentralized transformation
	Common external data representation
	XML as common data representation
	Java Object Serialization

	Time
	Introduction
	Synchronizing physical clocks

	Distributed execution model
	Events
	Ordering by logical clocks
	Logical clocks with scalar values
	Logical clocks with vectors

	Failure Handling in distributed applications
	Testing distributed applications
	Debugging of distributed applications
	Approaches of distributed debugging

	Distributed transactions
	Isolation
	Atomicity and persistence
	Two-phase commit Protocol (2PC)
	Extended 2PC
	Distributed Deadlock

	Group communication
	Groups of components
	Group Management
	Message dissemination
	Message delivery
	Taxonomy of multicast
	Group communication in ISIS
	JGroups

	Distributed Concensus
	Consensus problem
	Byzantine Generals Problem
	Interactive Consistency Problem
	Consensus in synchronous networks

	Authentacation service Kerberos
	Authentication process

	Web Services
	Service Oriented Architecture (SOA)
	Layered Approach
	Adpoting SOA

	Web Services – Characteristics
	Web Services Architecture
	Interoperability Stack
	Basic architecture
	Roles
	Operation
	Basic Standard Technologies
	Message Exchange Patterns

	Simple Object Access Protocol (SOAP)
	Parts
	Exchange Model
	SOAP in HTTP
	SOAP RPC Conventions
	SOAP-Router

	Web Services Description Language (WSDL)
	WSDL Information model
	Parts
	Generate code from WSDL
	Bad Practices

	Universal Description, Discovery and Integration (UDDI)
	UDDI Business Registry System
	UDDI Entities
	UDDI Registry API

	Representational State Transfer (REST)
	Web Service Composition
	Dimensions to handle complexity
	Web Service Orchestration

	Adopting Web Services
	Example Web Services
	Apache Axis
	Web Services & Java
	Distributed Process Architecture
	Semantic Web Services

	Mashups
	Mashup Techniques
	Development Support

	Design of distributed applications
	Steps in design
	Development environment
	Open Distributed Processing (ODP)
	Model Driven Architecture (MDA)

	Service-Oriented Modeling
	Service Evolution
	Life Cycle Structure
	Life Cycle Modeling
	SOM Framework

	Distributed file service
	Introduction
	Consistency types
	Replica placement

	Layers of a distributed file service
	Update of replicated files
	Optimistic concurrency control
	Pessimistic concurrency control
	Voting schemes

	Coda file system
	Architecture
	Naming
	Replication strategy
	Disconnected operation

	Distributed Shared Memory (DSM)
	Programming model
	Consistency model
	Tuple space
	Atomic operations
	Tuple space implementation
	Exapmle program

	Object Space
	Features of JavaSpaces
	Data structures
	Basic operations

	Object-based Distributed Systems
	Object Management Architecture (OMA)
	Object Request Brokers (ORB)
	Features
	ORB structure

	Common object services
	Inter-ORB protocol
	Distributed Component Object Model (DCOM)
	.NET-Framework

