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1 Introduction
1.1 What is security?
1.1.1 Essential Security Goals

• Confidentiality

• Integrity

• Availability

of data and systems.

1.1.2 More Security Properties

• Non-repudiation (Nicht-Abstreitbarkeit)

• Auditability

• Accountability

• Privacy

• Anonymity

1.1.3 Does it Matter?

• Private data

• Commercial data

• Government data

1.1.4 Relevance and Challanges

• Security-sensitive applications: eVoting, car2car, car2internet, ...

• Economic perspective: Enablers & Drivers

• Fight against vulnerabilities, potential damages, cyber crime

• National interest

• Privacy issues

• Lack of standards & understanding

• Social engineering

• System Vulnerabilities – Password Management, Operating Systems, Soft-
ware Bugs, Unchecked User Input
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1.1.5 Do we really want security

• Makes system hard / slow to use

• Costs

• Risks

• Is security subproblem of risk analysis?

• Different kinds of systems

• Tradeoff with liberty

1.1.6 What to do?

• Technically – Security Engineering, Cryptography

• Organizationally – Security policies

• People-Related

• Legally

1.2 What is security engineering?
• Software Engineering + Information Security

• Malice, Error, Mischance

• Tools, Processes & methots to design, implement, test & evolve systems

1.2.1 Security vs Safety

• Safety: Failures in normal operation

• Security: Failures as consequences of a hacker
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2 Introduction to Information Security
2.1 Cryptography

• Cryptography: Mathematical techniques concerning data security

• Kerckhoffs’ principle: Secure, if adversary knows everything except decla-
red secrets (keys)

2.1.1 Terminology

•
∑

: Alphabet

• M : Message space

• C: Ciphertext space

• K: Key space

• Ee : M → C; e ∈ K: Encrpytion Function (bijective)

• Dd : C → M ; d ∈ K: Decryption Function (reverse of E)

• Dd(Ee(M)) = M ⇔ Dd = E−1
e : Encrpytion sheme / cipher

• (e, d): Keypair (Symmetric if d can easily derived from e. Mostly: e = d)

• Breakable, if m can be obtained from c without (e, d) in appropriate time.

2.2 Symmetric Cryptographyc Protocols
2.2.1 One-Time Pad

• Key at least as long as message

• Unbreakable, unless: Key intercepted, Key not random, Keys reused

• Integrity not preserved

2.2.2 Monoalphabetic Substitution Ciphers

• Substitute plaintext letter with cyphertext letter

• Letter / Digram Frequency

2.2.3 Homophonic Substitution Ciphers

• Substitute one letter in m by with more letters in c

• Frequency analysis no longer easily possible

2.2.4 Polyalphabetic Substitution Ciphers

• Different cyphers depending on position within the block

• Problem: Determine block length, then frequency analysis
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2.2.5 Simple Transposition Ciphers

• Permutation of the letters within a block

2.2.6 Composition of Ciphers, Product Ciphers

• Security depending on used original ciphers

• Example: DES and 3DES

• Security ideas for block ciphers:

– Ciphertext bit relys on all plaintext bits
– No statistical relationship between m and c

– Altering any plaintext bit alters ciphertext bit with propability .5
– Altering ciphertext bit alters plaintext in unpredictable way

• 3DES: c = Ee1(De2(Ee3(m)))

– DES slow to implement in software
– Ee1 ◦ Ee2 gives more possible ciphertexts as Ee∀e ∈ K

– Meet-In-the-Middle attack possible

2.2.7 Stream Ciphers

• Keystream generated with cyphertext

• Keystream can be reproduced when m and c is known

2.2.8 MAC

• One-Way-Function: Easy to get hash value, but hard to get plaintext

• Non-invertibility, no hints from output to input, freedom of collision

• f : M × K → T (T = Tag = Hash-Value), Not possible to generate m′

with same tag t as m

2.3 Asymmetric Cryptographyc Protocols
• No shared Key

• Key-Generator + Encryption Algorithm + Decryption Algorithm

• E.g. PGP, S/MIME, SSH, IPSec, ...
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2.3.1 RSA

• Create primes: p, q

• n = pq, ϕ = (p− 1)(q − 1)

• Chose e, 1 < e < ϕ, such that ged(e, ϕ) = 1

• Compute d, such that ed ≡ 1 mod ϕ

• Private key = d, Public key = (n, e)

• Encryption: c = me mod n

• Decryption: m = cd mod n

• Computation of exponents is cheap, Factoring of large numbes is hard

• Attack people / side-channels, not algorithms

2.3.2 Signatures

• Encrypt hash with private key

• Anybody can encrypt with public key and compare hash values

2.4 Key Management
• Symmetric: Agree on a key

• Asymmetric: Make sure, that a public key belongs to somebody

2.4.1 Trusted Authority

• Shared key between TA with everybody

• All messages pass TA: TA as Bottleneck (always online), Who can be
trusted?

• TA used, to establish secure channel: A asks TA for session key. Session
key encrypted for A and B send to A, A forwards session key

• TA used, to establish secure channel: A asks TA for session key. Session
key encrypted for A send to A, session key encrypted for B send to B

• Problem: Replay attacks → Nonces

2.4.2 Needham-Shroeder Protocol

• A → TA: {A,B, n1}

• TA → A: {A,B, n1, ksession, {A, ksession}kB
}kA

• A → B: {A, ksession}kB

• B → A: {n2}ksession

• A → B: {n2 − 1}ksession
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• Problem: Man in the Middle attack, if Eve gets Session Key

– E → B: {A, ksession}kB [copied]
– B → A: {n3}ksesion [intercepted by Eve]
– E → B: {n3 − 1}ksession

• Solution: Timestamp in the message form TA to A that shall be forwarded
to B. But requires synchronized clocks (e.g. Kerberos with Authorisation
Server and Ticket Granting Server)

• Solution: Otway-Reas – Each number is attached to specific protocol run

2.4.3 Diffie-Hellman Key Agreement

• Prime p and Generator g publicly known, xA, xB secretly choosen

• yA = gxA( mod p) | yB = gxB ( mod p)

• kAB = yxA

B ( mod p) | kAB = yxB

A ( mod p)

• One-Way function (discrete logarithm problem)

• But: Identity not known

2.4.4 Certificates

• A → B: A, {{ksession}dA}eB

• Only works, if public key is known

• Man-in-the-middle attack when public key is retrieved from server, No
binding between key and person

• PKI: Obtain authenticated public keys. Certificate is digitally signed statem-
nt that binds public key to an entity.

• CertC,A: C certifies the authenticity of A. B must trust C.

• Less keys needed. Problems: Revocation, Identity verification, Establish-
ment of trust

• Semantics of Certificates

1. A claims towards TA, that PA is her public key
2. 1 + T confirms it verified that A knows the corresponding private

key
3. Non-repudiation: A is liable for signed statements with the certified

key

• Certificates only states something about public key, not about trustwort-
hiness of an entity

• Solve recursive problem with Certificate Chains
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• PKI: Hierachial certification (X.509), Cross-certification, Unstructured cer-
tification (PGP, WoT)

• Purpose of PKIs: Generation of keypairs, Authentication of entities, Ge-
neration/Distribution/Revocation/Verification of certificates

• Public Keys for encryption, authentication, non-repudiation

• Problems: Organisation, Chicken-and-egg, Standardization, Legal Problems,
Business model, Naming problem, Expiration & Revocation

2.5 Applications: Digital Signature & Encrypted Mails
• PGP: secure email exchange, trust in keys not people, web of trust, revo-

cation possible

• X.509: Bind certificates to real names, CRLs, Structured certificates

• S/MIME: Secure Multipurpose Internet Mail Extensions, Relies on X.509
(or PGP – not compatible), Multipart/Signed, Multipart/encrypted

• TLS/SSL: Use of Certificates, Needham-Schroeder

2.6 Access Control
2.6.1 Access Control Matrix Model

• Subjects S want to access objects O. Generally S ⊆ O

• Abstract rights R (e.g. read, write, own, execute)

• Matrix A: S ×O → 2R

• E.g. unix filesystem

• Store as columns: ACL, Store as lines: Capabilities List

2.6.2 RBAC

• ACLs unmanagable → Roles (Set of permissions)

• See summary “Computergestützte Gruppenarbeit”. Very exam relevant

2.6.3 Formalisms

• Programs/systems describe state (memory, registers, ...) transitions. Pro-
tection states: Part of the states concerning permissions.

• Context-awareness: Breaking-glass policy (Study shows, that 85% gets
emergencies) / Circumvention

• Protection state transitions: Create/Destroy subject, Create/Destroy ob-
ject, Enter/Delete Right

• Leakage / Undecidability: If a right r is added to an element, this right is
leaked. If a system can never leak the right r, it is safe w.r.t. r. ⇒ Whether
a given state is save is an undecidable problem
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• Security Policies: Partition states into authorized/secure, unauthorize-
d/unsecure

2.6.4 MAC / DAC

• Discretionary Access Control: Somebody can change the rights of access:
Unix file system, User own resources and control their access, Access based
on subjects and objects – flexible but open to mistakes/abuse

• Mandatory Access Control: System entity controls access to data, Policies
not managed by users

– Read Down: Subject clearance ≥ object clearance
– Write Up: Subject clearance ≤ object clearance
– Integrity: no read-up and write-down
– Lattice: Hierachial (linear) ordering & set of categories ⇒ Lettuce is

partial order on labels: c(h1, c1) ≤ (h2, c2) iff h1 ≤ h2 and c1 ⊆ c2.
– Confidentiality (Information Flow) Policies

2.6.5 Bell-LaPadula model

• MAC, subjects/objects classified by security levels, labels do not change:
multilevel security, no write-down, no read-up

• No-write-down prevents high-level subjects leaking messages

• Advantages: Modeling confidentiality in operating systems / databases

• Problems: Static model, Not specified, how add / delete objects, Contains
covert channels (e.g. Sidechannel attack)

2.6.6 Biba model

• Integrity problem. Based on no-read-down, no write-up

• Relax no-read-down (subject low watermark)

• Relax no-write-up (object low watermark)

• Change read/write directions

2.6.7 Chinese-Wall Policies

• Conflicts because clients of one company are direct competitors in same
market

⇒ No information flow that causes conflict of interest

• Companies C, subjects S, objects O

• cd : O → C: company dataset of ebjects

• cic : O → 2C
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• Security label: (cic(o), cd(o))

• Security matrix N = S × O, N(s, o) is true, if s had access to o, Initial
state: everything is false, Access permissions change dynamically

• ss-propperty: s is pertmitted access to o iff ∀o′ with N(s, o′) trie it holds
cd(o) = cd(o′) or cd(o) /∈ cic(o′)

• Problem: Indirect information flow (internal file-server, ...)

2.7 Usage Control
What happens after distributions of data (rights and duties): e.g. Personal data,
intellectual property, business data, administrative secrets

2.7.1 Roles and Classes of Requirements

• Data provider & data consumer (consumer may also be provider)

• Provider definces policies (typically without access over consumer)

2.7.2 Control and Observation

• Preventiv / Control: Try to enforce control (DRM)

• Detective / Observation: Detect violation (Law)

2.7.3 Requirements

• Restrictions and neccessary actions (Permission and duty)

• Conditions (Time, purpose, ...)

2.8 Information Flow
• Information flow (data leakage) occurs, when value of a secret variable

influences another (non secret) value

• Security policies describe which flows are allowed

• Formal Model of Non-Interference: Information flow from p1 to p2 if some
actions of p1 influence p2. Problem: No interaction depending on secret
data. (Not covered channels e.g. timing)

2.8.1 Non-Interference

• M = (S, A, O, step, output, s0) – States S, actions A, outputs O, initial
state s0, function step: S × A → S, Output function S × A → O; run
S ×A∗ → S (Sequences of actions)

• System M + security domains D = { u, v }. Noninterference relation
antireflexive on D ×D: Value of output(b) independent from executing a
or not.
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• Purge: A∗ ×D → A∗: Removes all actions from sequence, that shall not
interfere with specified domain

• M is secure, if test(α, a) = test(purge(α, dom(a)), a) – System secure, iff
output of action is independent from actions that shall not interfere with
dom(a)

• Transitive policies (= multilevel security policy) not expressable in this
model

2.8.2 Information Flow for Programs

• All runs: static analysis

• One run: dynamic analysis

• Problem: Label creeps (Everything depends on everything)

2.8.3 Information Flow Detection

• Explicit Information flow from x to y: y := f(x1, ..., xn)

• Implicit Information flow from secret to x: if (secret) x := 1; else x := 2

• Implicit Information flow from secret to x and y: if (secret) x := 1; else y
:= 1 (regardless of branch)

2.8.4 Abstraction Levels

• Systems

• Programs (System-Calls?)

• Examples: SELinux
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3 Software Engineering meets Security
3.1 Security Requirements

• Properties of a system

• Non-functional requirements: Security, Usability, ...

• Quantified security indicators? ⇒ Need to be made precice

• Threat models: Protection agains threats you have thought about

3.2 Requirements Engineering
• Activities: Elicitation, Analysis, Specification, Validation ⇔ Design, Im-

plementation, V&V

3.3 Use cases & Misuse cases
• Sequence of steps between user and system

• Set of scenarios for common user goal

• Generally: Functional requirements, High level, Discussions ⇒ How about
Security Requirements

• Misuse Cases: Wanted vs. unwanted behavior (sometimes unintentionally)

• Use & Misusecases can be structured in one diagram

3.4 Refinement
3.4.1 Fault Tree Analysis

• Top-Down: What needs to happen for bad things to appear?

• Bottom-Up: What happens, if one component produces unintended results
/ fails

3.4.2 Attack Trees

• Fault-Trees for Attacks. Nodes as threats

• What is needed to perform an attack?

3.4.3 Discussion

• Security requirements mostly for complete system, sometimes components

• Probability for security breaches not predictable

• Reliability Engineering: Estimate propability of failures

• Scenario Analysis, Risk analysis
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3.5 Regulations as Requirements
3.5.1 Bundesdatenschutzgesetz

• Protection of individuals from being constrained in their personal rights
by use of personal data

• Personal data: Identitiy can be seduced, Partial sensitive: racial, ethnical,
... status ⇒ Explicit consent necessary

• 7 Principles of data protection

– Appropriation (Zweckbindung)
– Minimum possible extent (Datensparsamkeit)
– Data Security (Access, Usage, ...)
– Data Secrecy (Non-authorized people not allowed to collect/proces-

s/use)
– Responsibility (Who is responsible)
– Individual decision (Einzelentscheidung)
– Transparency (Auskunftsrecht)

• Collection, Handling, Usage of personal data is forbidden unless explicitly
allowed (by law, by data owner)

• Information self-determination

• Private Institutions

– Data protection officer, if 10 people (electronically or 20 manually)
are steadily handling personal data

– Collection, storage, ... for business purpose allowed (Justified by pur-
pose / rightful interest / data publicly available)

– Purpose of use specified

• Public Institutions

– Allowed if necesarry to perform duties
– If third party data, personal data optional
– Strict regulations on further collection / transfer
– Data protection officer compulsory

3.5.2 Individual Rights

• Cost-free access to stored data, origin, receivers, purpose of storage

• Data collected without knowledge ⇒ Notification

• Must be corrected if wrong

• Must be deleted (locked up in special circumstances) if purpose has served
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3.6 Design-level security
Methodology to build secure applications: formal, general, usable, wide spec-
trum, tool supported, scales

3.6.1 Model Driven Security

• Model Driven Architecture: System Model (e.g. in UML), Model Trans-
formation ⇒ Target System (Usable Code)

• Model Driven Security: System Model + Security Model, Model Transfor-
mation + Extensions ⇒ Target System + Security Infrastructure

• Model: View of the System (with semantics)

• MDA (Object Management Group Standard) based on Modeling (UML)
/ Metamodeling (Meta-Object Facitlity) standards

• UML: abstract/concrete syntax, includes Object Constraint Language,
But not yet Formal Method, (e.g. Class Diagram, Statechart)

• Domain Specific Languages: Metamodel defines UML Model for a specific
domain

• MDA Translation: Fix platform (e.g. J2EE/EJB), Translation produces
JavaCode & XML deployment descriptors

3.6.2 Secure components

• Security Design Language (Abstract + Concrete syntax): e.g. RBAC +
class diagrams

• Dialect bridges Design Language + Security Language (identify protected
resources)

• Access Control Policies enforced using a reference monitor. Checks whether
user are authorized to performs actions

• Access Control

– Declarative: User u has Permission p ⇔ (u, p) ∈ AC (User in role
customer may withdraw money)

– Programmatic: Assertion at relevant program points. System envi-
ronment provides information needed for decisicon (if he is owner of
the account)

– RBAC (+ Extensions: Role/User/Permission Hierarchie, Authoriza-
tion Constraints)

• SecureUML: Formalize Permissions for actions on protected resources

– Roles & Users not design-time issue, but administrative
– Permissions after language combination (actions & resources needed)

bind action(s) to single resource (Association class between role and
class)
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– Authorization Constraints in OCL subset (self, caller, attributes,
side-effect free methods, ...) e.g. caller = self.owner.name

• ComponentUML: Class-based language for data modeling

• Combine SecureUML & ComponentUML: Dialect combines syntax, iden-
tify protected resources, resource action, define action hierarchie

– Resources identified by subtyping
– Resource actions defined using named dependencies from resource

types to action classes

3.6.3 Semantics

• Intuitively: System behaves as before except certain actions are disallowed
by access control

• Formally: Defined as labeled transition system (LTS, approx. state machi-
ne) ⇒ Constrains decrease set of possible traces

3.6.4 Generating security Infrastructures

• Decrease Burden, Faster adaption, Better Scaling, Correctness

• EJB

– Deployment descriptor record with AC information
– RBAC: Action → Method → Deployment-descriptor with permissi-

ons & security-roles
– Assertion: Compute permissions & roles. Check if constraint attached

& include assertion in method

• .NET

– Language independency (communication of languages)
– AC configured as attributes of methods

3.6.5 Secure controllers

• Controller defines system behaviour (states & events)

• 3-tier architecture: MVC.

• Metamodel: Statemachine formalizes Controller

• Generate web applications based on Java servlets
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3.7 Security Patterns for Software & Systems
3.7.1 Security principles

• Least privilege: Minimize negative consequences of errors / attacks (e.g.
keys in buildings)

• Complete mediation: Always control access (e.g. airports)

• Secure, fail-safe defaults: Start in secure state and return to secure state
when failuring (e.g. whitelisting)

• Compartmentalization: Organization into isolated zones/compartments
(e.g. virtual machine)

• Minimizing exposure: Reduce external interfaces (e.g. disable bluetooth)

3.7.2 Kind of patterns

• Common practice / blueprint / guide for design

• Requirements, Threats, Design, Business Processes, IT Infrastructure, IT
Processes

• Requirements: Protection profiles e.g. cryptographic key management

• Threat modeling: Attack modeling means systematically documenting at-
tacks (structured, reusable)

• IT controll: Auditing requirements

3.7.3 Security patterns

• Idea: Design patterns for secure system design

• Problem: security cross-cutting ⇒ security pattern not within one part of
software

• Groups of patterns: Security/Risk management, identification/authenti-
cation, (system / operating system) access control, accounting, firewall,
secure internet applications

• Pattern Library: Name, Problem, Solution, Consequences

• Available (access to resources) System Catalog: Checkpointed System (Roll-
back), Replicated System

• Protected (protecting resources) System Catalog: Protected System (Re-
ference Monitor), Policy, Secure Communication

• Secure Communication

– Motivation: Ensure mutual security policy: Prevent eavsdropping,
Modification of data, ...

– Applicability: Communication parties, Communication channel, (Com-
munication Protection Proxy)
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– Variants: In-line proxy (SSL), Proxy as out-of-band service (PGP)
– Consequences: Data exchange protected, may reduce throughput/la-

tency, may require cryptography (deployment), may interfere with
other resources (routers, ...)

– Implementation: Proxys may apply: Data Origin authentication, Da-
ta integrity (replay detection, ordering)

• Protected System (Reference Monitor / Enclave)

– Motivation: Enforce access security policy, Complete Mediation
– Variants: Centralized guard (syscalls), guard distributed (1 per re-

source type, Java 2 Security Architecture)
– Uses “Facade” Design Pattern
– Participants: Client, Guard, Policy, Resources
– Consequences: Isolates resources, Loosens copuling between policy/-

resource implementation, Improves system assurability, Degrades per-
formance

– Implementation: Guard self-protection, Assurance (of correct guard
functionality)

3.7.4 Integration into development process

• Choose design, Identify system components, communication channels, etc.

• Apply “Available System Sequence”: Identify critical components & apply
Error correction / Fault-Tolerant-System / Replication Pattern

• Apply “Protected System Sequence”: Identify resources and actors, define
protected systems (PS), Chose guard for PS, define Policy pattern (Policy
Decision Point)

• Review / Refactor

3.8 Implementation-level Security
3.8.1 Buffer overflows

• Buffers are \0-terminated. Problem writing more into a buffer than space
is allocated

• Stack grows from top to bottom

• Defense

– Canary: Check if local variable canary is changed before leaving a
function

– Defensive programming: Avoid unsafe functions “strncpy” instead of
“strcpy”. Check array bounds, ...

– Avoid C(++): Use type safe languages (but speed, ...)
– Avoid Buffers on stack (but heap overflows possible)
– Mark stack (or heap) non-executable (but still return-to-libc possible)
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3.8.2 Format string vulnerabilities

• Problem: Mixing of control (“e.g. %s”) & data structures

• Less & more parameters for printf

• Arguments are pushed to the stack and then printed. If there are less
arguments, printf reads from the stack and might print function data

• Function call without format string: printf(s) with ∗s = ”%08x” prints
first stack entry

• Function call printf(%x%x%x%x) prints some chibberish and then the
local variable on stack

• %n stores the number of characters printed into memory. Function call
printf(%x%x%x%x%n) stores the length of all printed characters into
the stack (destroy integrity)

• Read/Write arbitrary memory locations

• Solutions: Be aware of library functions, Analysis tools, Weaker library
functions ⇒ Sanitizing functions

3.8.3 Data Injection

• Simple PHP data injection: Show files from filesystem

• SQL-injection: Usually in forms: Input of form “SELECT * FROM ad-
dressinfo WHERE user = ’alex’ OR 1=1;’“ ⇒ Prepared Statements (Que-
ry object instead of string), Strict type checking

3.8.4 Cross site scripting / Cross site request forgery

• Non-persistent attacks / Reflective attacks (e.g. Forged link): Put java-
script code within a link, Javascript will be reflected by the webserver and
run on the client

• Persistent attacks (e.g. Malicious guestbook content): Put javascript in a
guestbook, any other visitor will run the script ⇒ Server should filter for
embedded scripts

• DOM based attacks / Local attacks (web application not involved): Put
javascript code within a script that is run locally by modifying DOM ele-
ments. Malicious code never embedded in raw htlm ⇒ Disable Javascript
/ Don’t click on malicious links

• Cross Site Request Forgery (XSRF): Exploirt web site’s trust in user’s
browser. Click malicious link (img src), while being logged into secure
system ⇒ Command authentication, Lifetime of session cookies, http re-
ferrer, ...
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4 Risk and system analysis & Risk assesment
4.1 Motivation and Goals

• Enable mission accomplishment (by secure IT systems, well-informed de-
cisions)

• Balance cost of security measures with mission achievement

• Maintain confidence, Protect sensitive data, Avoid fraud, Avoid liability,
Laws, ...

4.2 Assets, Threats, Vulnerabilities
• Assets: Things of value for company (Information, Products, Buildings,

Shares, Systems, People, Reputation, Trust, Potential political fallout) –
Tangible (physical, logical) vs. intangible (reputation)

• Value of information: Producing costs, Price on market, Reproduction
price, Benefits, Business advantage, Loss of confidence

• Potential cause of unwanted event that may result in harm to organiza-
tion & assets (Harm: acces, damage; Event: exploit, attack; Accidental /
Intentional)

• Vulnerability: Characteristic of asset which can be exploited by threat
(Weaknesses, ...)

• Need to determine most important assets: Threads – Assets – Consequen-
ces

• Sources: Hacking (black/white-head), Insiders, Accidential deletion, En-
vironmental damage, ...

• Direct impact: Destruction, Corruption, Theft/Loss, Disclosure, Inappro-
priate use, Interruption of services

• Identify threats: Attack trees, ...

4.3 Risk
• Possibility to suffer harm or loss

• Measure of failure to counter a threat

• Characteristics: Loss, Likelihood, Degree of control

• Probability that specific threat successfully exploits vulnerability causing
loss

• RISK =
∑

IMPACT/VALUE × PROBABILITY (Annual Loss Expo-
sure – Problem: In case of event damage is much higher, Additional costs
rebuying stuff)

• Handling riks: Avoiding (by changing requirements / System characteri-
stics), Transferring (buy insurance), Assuming (accepting & controlling)
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4.4 Qualitativ & Quantitative risk analysis & management
• Procedure: Identify assets; Ascertain threats, riks, concerns; Prioritize;

Corrective measures; Monitor effectiveness

• Quantitative: Numeric values for value, Probability, ... ⇒ Numbers good
for comparison, but critical knowledge base, costly

• Qualitative: “What if” questions (possibly categories), ⇒ simpler, easy
involvement, but more subjection no basis for cost analysis

• Security rated with regard to the time it takes to breakt them given a set
of tools

4.5 BSI baseline protection
• “Security Patterns in action”: Sharing of ideas in security design / Stan-

dard measures

• Risk analysis only in extreme cases, standard measures in normal cases

• Structure IT assets into modules (components/procedures/IT systems) &
map company’s infrastructure to modules

• Establish IT security concept: Get IT structure, Qualitative analysis of
protection requirements, Map infrastructure to manual components, Risk
analysis for assets with very high risk, Compare situation to safeguard &
take action

• Combination of requirements

– Maximum principle (Two systems on one server: Protection maxi-
mum of the two)

– Dependency relationships (Protection of A need to be high, if B de-
pents on A and has high protection need)

– Cumulative effects (Many apps with low protection, but server crash
does harm)

– Distributive effect (Irrelevant parts of “high” application may crash)

• Data will be mapped to system. ⇒ Protect the systems instead of the
data. Threats are linked to safeguards.

4.5.1 Domain Concepts

• General IT security aspects (e.g. empolyees leaving the company)

• Infrastructure security (e.g. physical security)

• IT systems (e.g. firewalls

• Networking aspects (e.g. routers)

• Applications (e.g. web servers)
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5 Evaluation Criteria: The Common Criteria
• How do you assess, that something is secure?

• “How do you convince s.b. that your system is secure?”

• Orange-Book hierarchic: No protection (D), DAC (C), MAC (B), Verifi-
cation design

• Common Criteria: Design Secure Environment + Evaluation Assurance
Levels

• Certifying Products (s.t. by looking at the process)

• Evaluation techniques: Analysis of process, Check that process is applied,
Verification of proofs, Penetration testing, Analysis of vulnerabilities, ...

• Target of Evaluation (ToE, e.g. os, network, ...)

• Idea: standardized functional security requirements & assurance require-
ments ⇒ Protection Profiles (consistent & complete)

• Vendor instanciates PP into security target (ST)

• Structure of CC: Introdcution + General model, Security functional re-
quirements, Security assurance requirements

– General model – protection profile: Security objectives instanciated
by Security target. ToE shall confirm with ST. (PP→ ST→ Evaluate
ToE)

– Security functional requirements: Desired security behaviour for ToE
(e.g. Security audit, communication, crypto support, user data pro-
tection, identification & authentication, security management, priva-
cy, protection of ToE security functions)

– ToE assurance requirements: How can security requirements be im-
plemented (Configuration management, delivery and operation, de-
velopment, guidance documents)

• Evaluation Assurance Levels: Functionally testest (EAL1) to Formally ve-
rified design (EAL7)

• Pros: Flexible & thorough, international, protection profiles as overview
for implementation, EALs overview for assurance

• Cons: Evaluation relates to system version, full control over product is nee-
ded, timing (CC evaluation takes 1 year), terminology, cost-effectiveness?,
quality of PPs?, Evaluation of documents instead of system

5.1 Microsoft SDL
• Microsoft Security Development Lifecycle

• Training, Requirements, Design, Implementation, Verification, Release,
Response
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• SDL-Agile: Sprint/One-Time Requirements

• In general: Think about security in each software development step
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