
Security Engineering
TUM Summer Term 2014

Lecturer: Alexander Pretschner
Janosch Maier

29. Juli 2014

1

Inhaltsverzeichnis
1 Introduction 4

1.1 What is security? . 4
1.1.1 Essential Security Goals 4
1.1.2 More Security Properties 4
1.1.3 Does it Matter? . 4
1.1.4 Relevance and Challanges 4
1.1.5 Do we really want security 5
1.1.6 What to do? . 5

1.2 What is security engineering? . 5
1.2.1 Security vs Safety . 5

2 Introduction to Information Security 6
2.1 Cryptography . 6

2.1.1 Terminology . 6
2.2 Symmetric Cryptographyc Protocols 6

2.2.1 One-Time Pad . 6
2.2.2 Monoalphabetic Substitution Ciphers 6
2.2.3 Homophonic Substitution Ciphers 6
2.2.4 Polyalphabetic Substitution Ciphers 6
2.2.5 Simple Transposition Ciphers 7
2.2.6 Composition of Ciphers, Product Ciphers 7
2.2.7 Stream Ciphers . 7
2.2.8 MAC . 7

2.3 Asymmetric Cryptographyc Protocols 7
2.3.1 RSA . 8
2.3.2 Signatures . 8

2.4 Key Management . 8
2.4.1 Trusted Authority . 8
2.4.2 Needham-Shroeder Protocol 8
2.4.3 Diffie-Hellman Key Agreement 9
2.4.4 Certificates . 9

2.5 Applications: Digital Signature & Encrypted Mails 10
2.6 Access Control . 10

2.6.1 Access Control Matrix Model 10
2.6.2 RBAC . 10
2.6.3 Formalisms . 10
2.6.4 MAC / DAC . 11
2.6.5 Bell-LaPadula model . 11
2.6.6 Biba model . 11
2.6.7 Chinese-Wall Policies . 11

2.7 Usage Control . 12
2.7.1 Roles and Classes of Requirements 12
2.7.2 Control and Observation 12
2.7.3 Requirements . 12

2.8 Information Flow . 12
2.8.1 Non-Interference . 12
2.8.2 Information Flow for Programs 13
2.8.3 Information Flow Detection 13

2

2.8.4 Abstraction Levels . 13

3 Software Engineering meets Security 14
3.1 Security Requirements . 14
3.2 Requirements Engineering . 14
3.3 Use cases & Misuse cases . 14
3.4 Refinement . 14

3.4.1 Fault Tree Analysis . 14
3.4.2 Attack Trees . 14
3.4.3 Discussion . 14

3.5 Regulations as Requirements . 15
3.5.1 Bundesdatenschutzgesetz 15
3.5.2 Individual Rights . 15

3.6 Design-level security . 16
3.6.1 Model Driven Security . 16
3.6.2 Secure components . 16
3.6.3 Semantics . 17
3.6.4 Generating security Infrastructures 17
3.6.5 Secure controllers . 17

3.7 Security Patterns for Software & Systems 18
3.7.1 Security principles . 18
3.7.2 Kind of patterns . 18
3.7.3 Security patterns . 18
3.7.4 Integration into development process 19

3.8 Implementation-level Security . 19
3.8.1 Buffer overflows . 19
3.8.2 Format string vulnerabilities 20
3.8.3 Data Injection . 20
3.8.4 Cross site scripting / Cross site request forgery 20

4 Risk and system analysis & Risk assesment 21
4.1 Motivation and Goals . 21
4.2 Assets, Threats, Vulnerabilities 21
4.3 Risk . 21
4.4 Qualitativ & Quantitative risk analysis & management 22
4.5 BSI baseline protection . 22

4.5.1 Domain Concepts . 22

5 Evaluation Criteria: The Common Criteria 23
5.1 Microsoft SDL . 23

3

1 Introduction
1.1 What is security?
1.1.1 Essential Security Goals

• Confidentiality

• Integrity

• Availability

of data and systems.

1.1.2 More Security Properties

• Non-repudiation (Nicht-Abstreitbarkeit)

• Auditability

• Accountability

• Privacy

• Anonymity

1.1.3 Does it Matter?

• Private data

• Commercial data

• Government data

1.1.4 Relevance and Challanges

• Security-sensitive applications: eVoting, car2car, car2internet, ...

• Economic perspective: Enablers & Drivers

• Fight against vulnerabilities, potential damages, cyber crime

• National interest

• Privacy issues

• Lack of standards & understanding

• Social engineering

• System Vulnerabilities – Password Management, Operating Systems, Soft-
ware Bugs, Unchecked User Input

4

1.1.5 Do we really want security

• Makes system hard / slow to use

• Costs

• Risks

• Is security subproblem of risk analysis?

• Different kinds of systems

• Tradeoff with liberty

1.1.6 What to do?

• Technically – Security Engineering, Cryptography

• Organizationally – Security policies

• People-Related

• Legally

1.2 What is security engineering?
• Software Engineering + Information Security

• Malice, Error, Mischance

• Tools, Processes & methots to design, implement, test & evolve systems

1.2.1 Security vs Safety

• Safety: Failures in normal operation

• Security: Failures as consequences of a hacker

5

2 Introduction to Information Security
2.1 Cryptography

• Cryptography: Mathematical techniques concerning data security

• Kerckhoffs’ principle: Secure, if adversary knows everything except decla-
red secrets (keys)

2.1.1 Terminology

•
∑

: Alphabet

• M : Message space

• C: Ciphertext space

• K: Key space

• Ee : M → C; e ∈ K: Encrpytion Function (bijective)

• Dd : C → M ; d ∈ K: Decryption Function (reverse of E)

• Dd(Ee(M)) = M ⇔ Dd = E−1
e : Encrpytion sheme / cipher

• (e, d): Keypair (Symmetric if d can easily derived from e. Mostly: e = d)

• Breakable, if m can be obtained from c without (e, d) in appropriate time.

2.2 Symmetric Cryptographyc Protocols
2.2.1 One-Time Pad

• Key at least as long as message

• Unbreakable, unless: Key intercepted, Key not random, Keys reused

• Integrity not preserved

2.2.2 Monoalphabetic Substitution Ciphers

• Substitute plaintext letter with cyphertext letter

• Letter / Digram Frequency

2.2.3 Homophonic Substitution Ciphers

• Substitute one letter in m by with more letters in c

• Frequency analysis no longer easily possible

2.2.4 Polyalphabetic Substitution Ciphers

• Different cyphers depending on position within the block

• Problem: Determine block length, then frequency analysis

6

2.2.5 Simple Transposition Ciphers

• Permutation of the letters within a block

2.2.6 Composition of Ciphers, Product Ciphers

• Security depending on used original ciphers

• Example: DES and 3DES

• Security ideas for block ciphers:

– Ciphertext bit relys on all plaintext bits
– No statistical relationship between m and c

– Altering any plaintext bit alters ciphertext bit with propability .5
– Altering ciphertext bit alters plaintext in unpredictable way

• 3DES: c = Ee1(De2(Ee3(m)))

– DES slow to implement in software
– Ee1 ◦ Ee2 gives more possible ciphertexts as Ee∀e ∈ K

– Meet-In-the-Middle attack possible

2.2.7 Stream Ciphers

• Keystream generated with cyphertext

• Keystream can be reproduced when m and c is known

2.2.8 MAC

• One-Way-Function: Easy to get hash value, but hard to get plaintext

• Non-invertibility, no hints from output to input, freedom of collision

• f : M × K → T (T = Tag = Hash-Value), Not possible to generate m′

with same tag t as m

2.3 Asymmetric Cryptographyc Protocols
• No shared Key

• Key-Generator + Encryption Algorithm + Decryption Algorithm

• E.g. PGP, S/MIME, SSH, IPSec, ...

7

2.3.1 RSA

• Create primes: p, q

• n = pq, ϕ = (p− 1)(q − 1)

• Chose e, 1 < e < ϕ, such that ged(e, ϕ) = 1

• Compute d, such that ed ≡ 1 mod ϕ

• Private key = d, Public key = (n, e)

• Encryption: c = me mod n

• Decryption: m = cd mod n

• Computation of exponents is cheap, Factoring of large numbes is hard

• Attack people / side-channels, not algorithms

2.3.2 Signatures

• Encrypt hash with private key

• Anybody can encrypt with public key and compare hash values

2.4 Key Management
• Symmetric: Agree on a key

• Asymmetric: Make sure, that a public key belongs to somebody

2.4.1 Trusted Authority

• Shared key between TA with everybody

• All messages pass TA: TA as Bottleneck (always online), Who can be
trusted?

• TA used, to establish secure channel: A asks TA for session key. Session
key encrypted for A and B send to A, A forwards session key

• TA used, to establish secure channel: A asks TA for session key. Session
key encrypted for A send to A, session key encrypted for B send to B

• Problem: Replay attacks → Nonces

2.4.2 Needham-Shroeder Protocol

• A → TA: {A,B, n1}

• TA → A: {A,B, n1, ksession, {A, ksession}kB
}kA

• A → B: {A, ksession}kB

• B → A: {n2}ksession

• A → B: {n2 − 1}ksession

8

• Problem: Man in the Middle attack, if Eve gets Session Key

– E → B: {A, ksession}kB [copied]
– B → A: {n3}ksesion [intercepted by Eve]
– E → B: {n3 − 1}ksession

• Solution: Timestamp in the message form TA to A that shall be forwarded
to B. But requires synchronized clocks (e.g. Kerberos with Authorisation
Server and Ticket Granting Server)

• Solution: Otway-Reas – Each number is attached to specific protocol run

2.4.3 Diffie-Hellman Key Agreement

• Prime p and Generator g publicly known, xA, xB secretly choosen

• yA = gxA(mod p) | yB = gxB (mod p)

• kAB = yxA

B (mod p) | kAB = yxB

A (mod p)

• One-Way function (discrete logarithm problem)

• But: Identity not known

2.4.4 Certificates

• A → B: A, {{ksession}dA}eB

• Only works, if public key is known

• Man-in-the-middle attack when public key is retrieved from server, No
binding between key and person

• PKI: Obtain authenticated public keys. Certificate is digitally signed statem-
nt that binds public key to an entity.

• CertC,A: C certifies the authenticity of A. B must trust C.

• Less keys needed. Problems: Revocation, Identity verification, Establish-
ment of trust

• Semantics of Certificates

1. A claims towards TA, that PA is her public key
2. 1 + T confirms it verified that A knows the corresponding private

key
3. Non-repudiation: A is liable for signed statements with the certified

key

• Certificates only states something about public key, not about trustwort-
hiness of an entity

• Solve recursive problem with Certificate Chains

9

• PKI: Hierachial certification (X.509), Cross-certification, Unstructured cer-
tification (PGP, WoT)

• Purpose of PKIs: Generation of keypairs, Authentication of entities, Ge-
neration/Distribution/Revocation/Verification of certificates

• Public Keys for encryption, authentication, non-repudiation

• Problems: Organisation, Chicken-and-egg, Standardization, Legal Problems,
Business model, Naming problem, Expiration & Revocation

2.5 Applications: Digital Signature & Encrypted Mails
• PGP: secure email exchange, trust in keys not people, web of trust, revo-

cation possible

• X.509: Bind certificates to real names, CRLs, Structured certificates

• S/MIME: Secure Multipurpose Internet Mail Extensions, Relies on X.509
(or PGP – not compatible), Multipart/Signed, Multipart/encrypted

• TLS/SSL: Use of Certificates, Needham-Schroeder

2.6 Access Control
2.6.1 Access Control Matrix Model

• Subjects S want to access objects O. Generally S ⊆ O

• Abstract rights R (e.g. read, write, own, execute)

• Matrix A: S ×O → 2R

• E.g. unix filesystem

• Store as columns: ACL, Store as lines: Capabilities List

2.6.2 RBAC

• ACLs unmanagable → Roles (Set of permissions)

• See summary “Computergestützte Gruppenarbeit”. Very exam relevant

2.6.3 Formalisms

• Programs/systems describe state (memory, registers, ...) transitions. Pro-
tection states: Part of the states concerning permissions.

• Context-awareness: Breaking-glass policy (Study shows, that 85% gets
emergencies) / Circumvention

• Protection state transitions: Create/Destroy subject, Create/Destroy ob-
ject, Enter/Delete Right

• Leakage / Undecidability: If a right r is added to an element, this right is
leaked. If a system can never leak the right r, it is safe w.r.t. r. ⇒ Whether
a given state is save is an undecidable problem

10

• Security Policies: Partition states into authorized/secure, unauthorize-
d/unsecure

2.6.4 MAC / DAC

• Discretionary Access Control: Somebody can change the rights of access:
Unix file system, User own resources and control their access, Access based
on subjects and objects – flexible but open to mistakes/abuse

• Mandatory Access Control: System entity controls access to data, Policies
not managed by users

– Read Down: Subject clearance ≥ object clearance
– Write Up: Subject clearance ≤ object clearance
– Integrity: no read-up and write-down
– Lattice: Hierachial (linear) ordering & set of categories ⇒ Lettuce is

partial order on labels: c(h1, c1) ≤ (h2, c2) iff h1 ≤ h2 and c1 ⊆ c2.
– Confidentiality (Information Flow) Policies

2.6.5 Bell-LaPadula model

• MAC, subjects/objects classified by security levels, labels do not change:
multilevel security, no write-down, no read-up

• No-write-down prevents high-level subjects leaking messages

• Advantages: Modeling confidentiality in operating systems / databases

• Problems: Static model, Not specified, how add / delete objects, Contains
covert channels (e.g. Sidechannel attack)

2.6.6 Biba model

• Integrity problem. Based on no-read-down, no write-up

• Relax no-read-down (subject low watermark)

• Relax no-write-up (object low watermark)

• Change read/write directions

2.6.7 Chinese-Wall Policies

• Conflicts because clients of one company are direct competitors in same
market

⇒ No information flow that causes conflict of interest

• Companies C, subjects S, objects O

• cd : O → C: company dataset of ebjects

• cic : O → 2C

11

• Security label: (cic(o), cd(o))

• Security matrix N = S × O, N(s, o) is true, if s had access to o, Initial
state: everything is false, Access permissions change dynamically

• ss-propperty: s is pertmitted access to o iff ∀o′ with N(s, o′) trie it holds
cd(o) = cd(o′) or cd(o) /∈ cic(o′)

• Problem: Indirect information flow (internal file-server, ...)

2.7 Usage Control
What happens after distributions of data (rights and duties): e.g. Personal data,
intellectual property, business data, administrative secrets

2.7.1 Roles and Classes of Requirements

• Data provider & data consumer (consumer may also be provider)

• Provider definces policies (typically without access over consumer)

2.7.2 Control and Observation

• Preventiv / Control: Try to enforce control (DRM)

• Detective / Observation: Detect violation (Law)

2.7.3 Requirements

• Restrictions and neccessary actions (Permission and duty)

• Conditions (Time, purpose, ...)

2.8 Information Flow
• Information flow (data leakage) occurs, when value of a secret variable

influences another (non secret) value

• Security policies describe which flows are allowed

• Formal Model of Non-Interference: Information flow from p1 to p2 if some
actions of p1 influence p2. Problem: No interaction depending on secret
data. (Not covered channels e.g. timing)

2.8.1 Non-Interference

• M = (S, A, O, step, output, s0) – States S, actions A, outputs O, initial
state s0, function step: S × A → S, Output function S × A → O; run
S ×A∗ → S (Sequences of actions)

• System M + security domains D = { u, v }. Noninterference relation
antireflexive on D ×D: Value of output(b) independent from executing a
or not.

12

• Purge: A∗ ×D → A∗: Removes all actions from sequence, that shall not
interfere with specified domain

• M is secure, if test(α, a) = test(purge(α, dom(a)), a) – System secure, iff
output of action is independent from actions that shall not interfere with
dom(a)

• Transitive policies (= multilevel security policy) not expressable in this
model

2.8.2 Information Flow for Programs

• All runs: static analysis

• One run: dynamic analysis

• Problem: Label creeps (Everything depends on everything)

2.8.3 Information Flow Detection

• Explicit Information flow from x to y: y := f(x1, ..., xn)

• Implicit Information flow from secret to x: if (secret) x := 1; else x := 2

• Implicit Information flow from secret to x and y: if (secret) x := 1; else y
:= 1 (regardless of branch)

2.8.4 Abstraction Levels

• Systems

• Programs (System-Calls?)

• Examples: SELinux

13

3 Software Engineering meets Security
3.1 Security Requirements

• Properties of a system

• Non-functional requirements: Security, Usability, ...

• Quantified security indicators? ⇒ Need to be made precice

• Threat models: Protection agains threats you have thought about

3.2 Requirements Engineering
• Activities: Elicitation, Analysis, Specification, Validation ⇔ Design, Im-

plementation, V&V

3.3 Use cases & Misuse cases
• Sequence of steps between user and system

• Set of scenarios for common user goal

• Generally: Functional requirements, High level, Discussions ⇒ How about
Security Requirements

• Misuse Cases: Wanted vs. unwanted behavior (sometimes unintentionally)

• Use & Misusecases can be structured in one diagram

3.4 Refinement
3.4.1 Fault Tree Analysis

• Top-Down: What needs to happen for bad things to appear?

• Bottom-Up: What happens, if one component produces unintended results
/ fails

3.4.2 Attack Trees

• Fault-Trees for Attacks. Nodes as threats

• What is needed to perform an attack?

3.4.3 Discussion

• Security requirements mostly for complete system, sometimes components

• Probability for security breaches not predictable

• Reliability Engineering: Estimate propability of failures

• Scenario Analysis, Risk analysis

14

3.5 Regulations as Requirements
3.5.1 Bundesdatenschutzgesetz

• Protection of individuals from being constrained in their personal rights
by use of personal data

• Personal data: Identitiy can be seduced, Partial sensitive: racial, ethnical,
... status ⇒ Explicit consent necessary

• 7 Principles of data protection

– Appropriation (Zweckbindung)
– Minimum possible extent (Datensparsamkeit)
– Data Security (Access, Usage, ...)
– Data Secrecy (Non-authorized people not allowed to collect/proces-

s/use)
– Responsibility (Who is responsible)
– Individual decision (Einzelentscheidung)
– Transparency (Auskunftsrecht)

• Collection, Handling, Usage of personal data is forbidden unless explicitly
allowed (by law, by data owner)

• Information self-determination

• Private Institutions

– Data protection officer, if 10 people (electronically or 20 manually)
are steadily handling personal data

– Collection, storage, ... for business purpose allowed (Justified by pur-
pose / rightful interest / data publicly available)

– Purpose of use specified

• Public Institutions

– Allowed if necesarry to perform duties
– If third party data, personal data optional
– Strict regulations on further collection / transfer
– Data protection officer compulsory

3.5.2 Individual Rights

• Cost-free access to stored data, origin, receivers, purpose of storage

• Data collected without knowledge ⇒ Notification

• Must be corrected if wrong

• Must be deleted (locked up in special circumstances) if purpose has served

15

3.6 Design-level security
Methodology to build secure applications: formal, general, usable, wide spec-
trum, tool supported, scales

3.6.1 Model Driven Security

• Model Driven Architecture: System Model (e.g. in UML), Model Trans-
formation ⇒ Target System (Usable Code)

• Model Driven Security: System Model + Security Model, Model Transfor-
mation + Extensions ⇒ Target System + Security Infrastructure

• Model: View of the System (with semantics)

• MDA (Object Management Group Standard) based on Modeling (UML)
/ Metamodeling (Meta-Object Facitlity) standards

• UML: abstract/concrete syntax, includes Object Constraint Language,
But not yet Formal Method, (e.g. Class Diagram, Statechart)

• Domain Specific Languages: Metamodel defines UML Model for a specific
domain

• MDA Translation: Fix platform (e.g. J2EE/EJB), Translation produces
JavaCode & XML deployment descriptors

3.6.2 Secure components

• Security Design Language (Abstract + Concrete syntax): e.g. RBAC +
class diagrams

• Dialect bridges Design Language + Security Language (identify protected
resources)

• Access Control Policies enforced using a reference monitor. Checks whether
user are authorized to performs actions

• Access Control

– Declarative: User u has Permission p ⇔ (u, p) ∈ AC (User in role
customer may withdraw money)

– Programmatic: Assertion at relevant program points. System envi-
ronment provides information needed for decisicon (if he is owner of
the account)

– RBAC (+ Extensions: Role/User/Permission Hierarchie, Authoriza-
tion Constraints)

• SecureUML: Formalize Permissions for actions on protected resources

– Roles & Users not design-time issue, but administrative
– Permissions after language combination (actions & resources needed)

bind action(s) to single resource (Association class between role and
class)

16

– Authorization Constraints in OCL subset (self, caller, attributes,
side-effect free methods, ...) e.g. caller = self.owner.name

• ComponentUML: Class-based language for data modeling

• Combine SecureUML & ComponentUML: Dialect combines syntax, iden-
tify protected resources, resource action, define action hierarchie

– Resources identified by subtyping
– Resource actions defined using named dependencies from resource

types to action classes

3.6.3 Semantics

• Intuitively: System behaves as before except certain actions are disallowed
by access control

• Formally: Defined as labeled transition system (LTS, approx. state machi-
ne) ⇒ Constrains decrease set of possible traces

3.6.4 Generating security Infrastructures

• Decrease Burden, Faster adaption, Better Scaling, Correctness

• EJB

– Deployment descriptor record with AC information
– RBAC: Action → Method → Deployment-descriptor with permissi-

ons & security-roles
– Assertion: Compute permissions & roles. Check if constraint attached

& include assertion in method

• .NET

– Language independency (communication of languages)
– AC configured as attributes of methods

3.6.5 Secure controllers

• Controller defines system behaviour (states & events)

• 3-tier architecture: MVC.

• Metamodel: Statemachine formalizes Controller

• Generate web applications based on Java servlets

17

3.7 Security Patterns for Software & Systems
3.7.1 Security principles

• Least privilege: Minimize negative consequences of errors / attacks (e.g.
keys in buildings)

• Complete mediation: Always control access (e.g. airports)

• Secure, fail-safe defaults: Start in secure state and return to secure state
when failuring (e.g. whitelisting)

• Compartmentalization: Organization into isolated zones/compartments
(e.g. virtual machine)

• Minimizing exposure: Reduce external interfaces (e.g. disable bluetooth)

3.7.2 Kind of patterns

• Common practice / blueprint / guide for design

• Requirements, Threats, Design, Business Processes, IT Infrastructure, IT
Processes

• Requirements: Protection profiles e.g. cryptographic key management

• Threat modeling: Attack modeling means systematically documenting at-
tacks (structured, reusable)

• IT controll: Auditing requirements

3.7.3 Security patterns

• Idea: Design patterns for secure system design

• Problem: security cross-cutting ⇒ security pattern not within one part of
software

• Groups of patterns: Security/Risk management, identification/authenti-
cation, (system / operating system) access control, accounting, firewall,
secure internet applications

• Pattern Library: Name, Problem, Solution, Consequences

• Available (access to resources) System Catalog: Checkpointed System (Roll-
back), Replicated System

• Protected (protecting resources) System Catalog: Protected System (Re-
ference Monitor), Policy, Secure Communication

• Secure Communication

– Motivation: Ensure mutual security policy: Prevent eavsdropping,
Modification of data, ...

– Applicability: Communication parties, Communication channel, (Com-
munication Protection Proxy)

18

– Variants: In-line proxy (SSL), Proxy as out-of-band service (PGP)
– Consequences: Data exchange protected, may reduce throughput/la-

tency, may require cryptography (deployment), may interfere with
other resources (routers, ...)

– Implementation: Proxys may apply: Data Origin authentication, Da-
ta integrity (replay detection, ordering)

• Protected System (Reference Monitor / Enclave)

– Motivation: Enforce access security policy, Complete Mediation
– Variants: Centralized guard (syscalls), guard distributed (1 per re-

source type, Java 2 Security Architecture)
– Uses “Facade” Design Pattern
– Participants: Client, Guard, Policy, Resources
– Consequences: Isolates resources, Loosens copuling between policy/-

resource implementation, Improves system assurability, Degrades per-
formance

– Implementation: Guard self-protection, Assurance (of correct guard
functionality)

3.7.4 Integration into development process

• Choose design, Identify system components, communication channels, etc.

• Apply “Available System Sequence”: Identify critical components & apply
Error correction / Fault-Tolerant-System / Replication Pattern

• Apply “Protected System Sequence”: Identify resources and actors, define
protected systems (PS), Chose guard for PS, define Policy pattern (Policy
Decision Point)

• Review / Refactor

3.8 Implementation-level Security
3.8.1 Buffer overflows

• Buffers are \0-terminated. Problem writing more into a buffer than space
is allocated

• Stack grows from top to bottom

• Defense

– Canary: Check if local variable canary is changed before leaving a
function

– Defensive programming: Avoid unsafe functions “strncpy” instead of
“strcpy”. Check array bounds, ...

– Avoid C(++): Use type safe languages (but speed, ...)
– Avoid Buffers on stack (but heap overflows possible)
– Mark stack (or heap) non-executable (but still return-to-libc possible)

19

3.8.2 Format string vulnerabilities

• Problem: Mixing of control (“e.g. %s”) & data structures

• Less & more parameters for printf

• Arguments are pushed to the stack and then printed. If there are less
arguments, printf reads from the stack and might print function data

• Function call without format string: printf(s) with ∗s = ”%08x” prints
first stack entry

• Function call printf(%x%x%x%x) prints some chibberish and then the
local variable on stack

• %n stores the number of characters printed into memory. Function call
printf(%x%x%x%x%n) stores the length of all printed characters into
the stack (destroy integrity)

• Read/Write arbitrary memory locations

• Solutions: Be aware of library functions, Analysis tools, Weaker library
functions ⇒ Sanitizing functions

3.8.3 Data Injection

• Simple PHP data injection: Show files from filesystem

• SQL-injection: Usually in forms: Input of form “SELECT * FROM ad-
dressinfo WHERE user = ’alex’ OR 1=1;’“ ⇒ Prepared Statements (Que-
ry object instead of string), Strict type checking

3.8.4 Cross site scripting / Cross site request forgery

• Non-persistent attacks / Reflective attacks (e.g. Forged link): Put java-
script code within a link, Javascript will be reflected by the webserver and
run on the client

• Persistent attacks (e.g. Malicious guestbook content): Put javascript in a
guestbook, any other visitor will run the script ⇒ Server should filter for
embedded scripts

• DOM based attacks / Local attacks (web application not involved): Put
javascript code within a script that is run locally by modifying DOM ele-
ments. Malicious code never embedded in raw htlm ⇒ Disable Javascript
/ Don’t click on malicious links

• Cross Site Request Forgery (XSRF): Exploirt web site’s trust in user’s
browser. Click malicious link (img src), while being logged into secure
system ⇒ Command authentication, Lifetime of session cookies, http re-
ferrer, ...

20

4 Risk and system analysis & Risk assesment
4.1 Motivation and Goals

• Enable mission accomplishment (by secure IT systems, well-informed de-
cisions)

• Balance cost of security measures with mission achievement

• Maintain confidence, Protect sensitive data, Avoid fraud, Avoid liability,
Laws, ...

4.2 Assets, Threats, Vulnerabilities
• Assets: Things of value for company (Information, Products, Buildings,

Shares, Systems, People, Reputation, Trust, Potential political fallout) –
Tangible (physical, logical) vs. intangible (reputation)

• Value of information: Producing costs, Price on market, Reproduction
price, Benefits, Business advantage, Loss of confidence

• Potential cause of unwanted event that may result in harm to organiza-
tion & assets (Harm: acces, damage; Event: exploit, attack; Accidental /
Intentional)

• Vulnerability: Characteristic of asset which can be exploited by threat
(Weaknesses, ...)

• Need to determine most important assets: Threads – Assets – Consequen-
ces

• Sources: Hacking (black/white-head), Insiders, Accidential deletion, En-
vironmental damage, ...

• Direct impact: Destruction, Corruption, Theft/Loss, Disclosure, Inappro-
priate use, Interruption of services

• Identify threats: Attack trees, ...

4.3 Risk
• Possibility to suffer harm or loss

• Measure of failure to counter a threat

• Characteristics: Loss, Likelihood, Degree of control

• Probability that specific threat successfully exploits vulnerability causing
loss

• RISK =
∑

IMPACT/VALUE × PROBABILITY (Annual Loss Expo-
sure – Problem: In case of event damage is much higher, Additional costs
rebuying stuff)

• Handling riks: Avoiding (by changing requirements / System characteri-
stics), Transferring (buy insurance), Assuming (accepting & controlling)

21

4.4 Qualitativ & Quantitative risk analysis & management
• Procedure: Identify assets; Ascertain threats, riks, concerns; Prioritize;

Corrective measures; Monitor effectiveness

• Quantitative: Numeric values for value, Probability, ... ⇒ Numbers good
for comparison, but critical knowledge base, costly

• Qualitative: “What if” questions (possibly categories), ⇒ simpler, easy
involvement, but more subjection no basis for cost analysis

• Security rated with regard to the time it takes to breakt them given a set
of tools

4.5 BSI baseline protection
• “Security Patterns in action”: Sharing of ideas in security design / Stan-

dard measures

• Risk analysis only in extreme cases, standard measures in normal cases

• Structure IT assets into modules (components/procedures/IT systems) &
map company’s infrastructure to modules

• Establish IT security concept: Get IT structure, Qualitative analysis of
protection requirements, Map infrastructure to manual components, Risk
analysis for assets with very high risk, Compare situation to safeguard &
take action

• Combination of requirements

– Maximum principle (Two systems on one server: Protection maxi-
mum of the two)

– Dependency relationships (Protection of A need to be high, if B de-
pents on A and has high protection need)

– Cumulative effects (Many apps with low protection, but server crash
does harm)

– Distributive effect (Irrelevant parts of “high” application may crash)

• Data will be mapped to system. ⇒ Protect the systems instead of the
data. Threats are linked to safeguards.

4.5.1 Domain Concepts

• General IT security aspects (e.g. empolyees leaving the company)

• Infrastructure security (e.g. physical security)

• IT systems (e.g. firewalls

• Networking aspects (e.g. routers)

• Applications (e.g. web servers)

22

5 Evaluation Criteria: The Common Criteria
• How do you assess, that something is secure?

• “How do you convince s.b. that your system is secure?”

• Orange-Book hierarchic: No protection (D), DAC (C), MAC (B), Verifi-
cation design

• Common Criteria: Design Secure Environment + Evaluation Assurance
Levels

• Certifying Products (s.t. by looking at the process)

• Evaluation techniques: Analysis of process, Check that process is applied,
Verification of proofs, Penetration testing, Analysis of vulnerabilities, ...

• Target of Evaluation (ToE, e.g. os, network, ...)

• Idea: standardized functional security requirements & assurance require-
ments ⇒ Protection Profiles (consistent & complete)

• Vendor instanciates PP into security target (ST)

• Structure of CC: Introdcution + General model, Security functional re-
quirements, Security assurance requirements

– General model – protection profile: Security objectives instanciated
by Security target. ToE shall confirm with ST. (PP→ ST→ Evaluate
ToE)

– Security functional requirements: Desired security behaviour for ToE
(e.g. Security audit, communication, crypto support, user data pro-
tection, identification & authentication, security management, priva-
cy, protection of ToE security functions)

– ToE assurance requirements: How can security requirements be im-
plemented (Configuration management, delivery and operation, de-
velopment, guidance documents)

• Evaluation Assurance Levels: Functionally testest (EAL1) to Formally ve-
rified design (EAL7)

• Pros: Flexible & thorough, international, protection profiles as overview
for implementation, EALs overview for assurance

• Cons: Evaluation relates to system version, full control over product is nee-
ded, timing (CC evaluation takes 1 year), terminology, cost-effectiveness?,
quality of PPs?, Evaluation of documents instead of system

5.1 Microsoft SDL
• Microsoft Security Development Lifecycle

• Training, Requirements, Design, Implementation, Verification, Release,
Response

23

• SDL-Agile: Sprint/One-Time Requirements

• In general: Think about security in each software development step

24

	Introduction
	What is security?
	Essential Security Goals
	More Security Properties
	Does it Matter?
	Relevance and Challanges
	Do we really want security
	What to do?

	What is security engineering?
	Security vs Safety

	Introduction to Information Security
	Cryptography
	Terminology

	Symmetric Cryptographyc Protocols
	One-Time Pad
	Monoalphabetic Substitution Ciphers
	Homophonic Substitution Ciphers
	Polyalphabetic Substitution Ciphers
	Simple Transposition Ciphers
	Composition of Ciphers, Product Ciphers
	Stream Ciphers
	MAC

	Asymmetric Cryptographyc Protocols
	RSA
	Signatures

	Key Management
	Trusted Authority
	Needham-Shroeder Protocol
	Diffie-Hellman Key Agreement
	Certificates

	Applications: Digital Signature & Encrypted Mails
	Access Control
	Access Control Matrix Model
	RBAC
	Formalisms
	MAC / DAC
	Bell-LaPadula model
	Biba model
	Chinese-Wall Policies

	Usage Control
	Roles and Classes of Requirements
	Control and Observation
	Requirements

	Information Flow
	Non-Interference
	Information Flow for Programs
	Information Flow Detection
	Abstraction Levels

	Software Engineering meets Security
	Security Requirements
	Requirements Engineering
	Use cases & Misuse cases
	Refinement
	Fault Tree Analysis
	Attack Trees
	Discussion

	Regulations as Requirements
	Bundesdatenschutzgesetz
	Individual Rights

	Design-level security
	Model Driven Security
	Secure components
	Semantics
	Generating security Infrastructures
	Secure controllers

	Security Patterns for Software & Systems
	Security principles
	Kind of patterns
	Security patterns
	Integration into development process

	Implementation-level Security
	Buffer overflows
	Format string vulnerabilities
	Data Injection
	Cross site scripting / Cross site request forgery

	Risk and system analysis & Risk assesment
	Motivation and Goals
	Assets, Threats, Vulnerabilities
	Risk
	Qualitativ & Quantitative risk analysis & management
	BSI baseline protection
	Domain Concepts

	Evaluation Criteria: The Common Criteria
	Microsoft SDL

